223 research outputs found

    Engineering validation for lithium target facility of the IFMIF under IFMIF/EVEDA project

    Get PDF
    The International Fusion Materials Irradiation Facility (IFMIF), presently in the Engineering Validation and Engineering Design Activities (EVEDA) phase was started from 2007 under the frame of the Broader Approach (BA) agreement. In the activities, a prototype Li loop with the world's highest flow rate of 3000L/min was constructed in 2010, and it succeeded in generating a 100mm wide and 25mm thick with a free-surface lithium flow along a concave back plate steadily at a high-speed of 15m/s at 250°C for 1300h. In the demonstration operation it was needed to develop the Li flowing measurement system with precious resolution less than 0.1mm, and a new wave height measuring method which is laser-probe method was developed for measurements of the 3D geometry of the liquid Li target surface. Using the device, the stability of the variation in the Li flowing thickness which is required in the IFMIF specification was ±1mm or less as the liquid Li target, and the result was satisfied with it and the feasibility of the long-term stable liquid Li flow was also verified. The results of the other engineering validation tests such as lithium purification tests of lithium target facility have also been evaluated and summarized

    First-in-Human Phase I Study of an Oral HSP90 Inhibitor, TAS-116, in Patients with Advanced Solid Tumors.

    Get PDF
    HSP90 is involved in stability and function of cancer-related proteins. This study was conducted to define the MTD, safety, pharmacokinetics, pharmacodynamics, and preliminary antitumor efficacy of TAS-116, a novel class, orally available, highly selective inhibitor of HSP90. Patients with advanced solid tumors received TAS-116 orally once daily (QD, step 1) or every other day (QOD, step 2) in 21-day cycles. Each step comprised a dose escalation phase to determine MTD and an expansion phase at the MTD. In the dose escalation phase, an accelerated dose-titration design and a "3+3" design were used. Sixty-one patients were enrolled in Japan and the United Kingdom. MTD was determined to be 107.5 mg/m2/day for QD, and 210.7 mg/m2/day for QOD. In the expansion phase of step 1, TAS-116 was administered 5 days on/2 days off per week (QD × 5). The most common treatment-related adverse events included gastrointestinal disorders, creatinine increases, AST increases, ALT increases, and eye disorders. Eye disorders have been reported with HSP90 inhibitors; however, those observed with TAS-116 in the expansion phases were limited to grade 1. The systemic exposure of TAS-116 increased dose-proportionally with QD and QOD regimens. Two patients with non-small cell lung cancer and one patient with gastrointestinal stromal tumor (GIST) achieved a confirmed partial response. TAS-116 had an acceptable safety profile with some antitumor activity, supporting further development of this HSP90 inhibitor.This is a result from a first-in-human study, in which the HSP90 inhibitor TAS-116 demonstrated preliminary antitumor efficacy in patients with advanced solid tumors, including those with heavily pretreated GIST

    Characterization of long and stable de novo single alpha-helix domains provides novel insight into their stability

    Get PDF
    Naturally-occurring single α-helices (SAHs), are rich in Arg (R), Glu (E) and Lys (K) residues, and stabilized by multiple salt bridges. Understanding how salt bridges promote their stability is challenging as SAHs are long and their sequences highly variable. Thus, we designed and tested simple de novo 98-residue polypeptides containing 7-residue repeats (AEEEXXX, where X is K or R) expected to promote salt-bridge formation between Glu and Lys/Arg. Lys-rich sequences (EK3 (AEEEKKK) and EK2R1 (AEEEKRK)) both form SAHs, of which EK2R1 is more helical and thermo-stable suggesting Arg increases stability. Substituting Lys with Arg (or vice versa) in the naturally-occurring myosin-6 SAH similarly increased (or decreased) its stability. However, Arg-rich de novo sequences (ER3 (AEEERRR) and EK1R2 (AEEEKRR)) aggregated. Combining a PDB analysis with molecular modelling provides a rational explanation, demonstrating that Glu and Arg form salt bridges more commonly, utilize a wider range of rotamer conformations, and are more dynamic than Glu–Lys. This promiscuous nature of Arg helps explain the increased propensity of de novo Arg-rich SAHs to aggregate. Importantly, the specific K:R ratio is likely to be important in determining helical stability in de-novo and naturally-occurring polypeptides, giving new insight into how single α-helices are stabilized
    • …
    corecore