12 research outputs found

    The Inhibition of Inflammasome by Brazilian Propolis (EPP-AF)

    Get PDF
    Propolis extracts have gained the attention of consumers and researchers due to their unique chemical compositions and functional properties such as its anti-inflammatory activity. Recently, it was described a complex that is also important in inflammatory processes, named inflammasome. The inflammasomes are a large molecular platform formed in the cell cytosol in response to stress signals, toxins, and microbial infections. Once activated, the inflammasome induces caspase-1, which in turn induces the processing of inflammatory cytokines such as IL-1β and IL-18. So, to understand inflammasomes regulation becomes crucial to treat several disorders including autoinflammatory diseases. Since green propolis extracts are able to regulate inflammatory pathways, this work purpose was to investigate if this extract could also act on inflammasomes regulation. First, the extract was characterized and it demonstrated the presence of important compounds, especially Artepillin C. This extract was effective in reducing the IL-1β secretion in mouse macrophages and this reduction was correlated with a decrease in activation of the protease caspase-1. Furthermore, we found that the extract at a concentration of 30 μg/mL was not toxic to the cells even after a 18-hour treatment. Altogether, these data indicate that Brazilian green propolis (EPP-AF) extract has a role in regulating the inflammasomes

    The pattern recognition receptors Nod1 and Nod2 account for neutrophil recruitment to the lungs of mice infected with Legionella pneumophila

    No full text
    The intracellular bacterium Legionella pneumophila induces a severe form of pneumonia called Legionnaires diseases, which is characterized by a strong neutrophil (NE) infiltrate to the lungs of infected individuals. Although the participation of pattern recognition receptors, such as Toll-like receptors, was recently demonstrated, there is no information on the role of nod-like receptors (NLRs) for bacterial recognition in vivo and for NE recruitment to the lungs. Here, we employed a murine model of Legionnaires disease to evaluate host and bacterial factors involved in NE recruitment to the mice lungs. We found that L. pneumophila type four secretion system, known as Dot/Icm, was required for NE recruitment as dot/icm mutants fail to trigger NE recruitment in a process independent of bacterial multiplication. By using mice deficient for Nod1, Nod2, and Rip2, we found that these receptors accounted for NE recruitment to the lungs of infected mice. In addition, Rip2-dependent responses were important for cytokine production and bacterial clearance. Collectively, these studies show that Nod1, Nod2, and Rip2 account for generation of innate immune responses in vivo, which are important for NE recruitment and bacterial clearance in a murine model of Legionnaires diseases. (C) 2010 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.PEW Latin America Program in Biomedical SciencesINCTV/CNPqFAPESP[06/52867-4

    Protective efficacy of different strategies employing Mycobacterium leprae heat-shock protein 65 against tuberculosis

    No full text
    Tuberculosis is a major threat to human health. The high disease burden remains unaffected and the appearance of extremely drug-resistant strains in different parts of the world argues in favor of the urgent need for a new effective vaccine. One of the promising candidates is heat-shock protein 65 when used as a genetic vaccine (DNAhsp65). Nonetheless, there are substantial data indicating that BCG, the only available anti-TB vaccine for clinical use, provides other important beneficial effects in immunized infants. Methods: We compared the protective efficacy of BCG and Hsp65 antigens in mice using different strategies: i) BCG, single dose subcutaneously; ii) naked DNAhsp65, four doses, intramuscularly; iii) liposomes containing DNAhsp65, single dose, intranasally; iv) microspheres containing DNAhsp65 or rHsp65, single dose, intramuscularly; and v) prime–boost with subcutaneous BCG and intramuscular DNAhsp65. Results: All the immunization protocols were able to protect mice against infection, with special benefits provided by DNAhsp65 in liposomes and prime–boost strategies. Conclusion: Among the immunization protocols tested, liposomes containing DNAhsp65 represent the most promising strategy for the development of a new anti-TB vaccine8912551264sem informaçãosem informaçã

    Protective efficacy of different strategies employing Mycobacterium leprae heat-shock protein 65 against tuberculosis

    No full text
    Background: Tuberculosis is a major threat to human health. The high disease burden remains unaffected and the appearance of extremely drug-resistant strains in different parts of the world argues in favor of the urgent need for a new effective vaccine. One of the promising candidates is heat-shock protein 65 when used as a genetic vaccine (DNAhsp65). Nonetheless, there are substantial data indicating that BCG, the only available anti-TB vaccine for clinical use, provides other important beneficial effects in immunized infants. Methods: We compared the protective efficacy of BCG and Hsp65 antigens in mice using different strategies: i) BCG, single dose subcutaneously; ii) naked DNAhsp65, four doses, intramuscularly; iii) liposomes containing DNAhsp65, single dose, intranasally; iv) microspheres containing DNAhsp65 or rHsp65, single dose, intramuscularly; and v) prime-boost with subcutaneous BCG and intramuscular DNAhsp65. Results: All the immunization protocols were able to protect mice against infection, with special benefits provided by DNAhsp65 in liposomes and prime-boost strategies. Conclusion: Among the immunization protocols tested, liposomes containing DNAhsp65 represent the most promising strategy for the development of a new anti-TB vaccine

    The <i>Aspergillus fumigatus pkcA</i><sup>G579R</sup> Mutant Is Defective in the Activation of the Cell Wall Integrity Pathway but Is Dispensable for Virulence in a Neutropenic Mouse Infection Model

    Get PDF
    <div><p><i>Aspergillus fumigatus</i> is an opportunistic human pathogen, which causes the life-threatening disease, invasive pulmonary aspergillosis. In fungi, cell wall homeostasis is controlled by the conserved <u>C</u>ell <u>W</u>all <u>I</u>ntegrity (CWI) pathway. In <i>A</i>. <i>fumigatus</i> this signaling cascade is partially characterized, but the mechanisms by which it is activated are not fully elucidated. In this study we investigated the role of protein kinase C (PkcA) in this signaling cascade. Our results suggest that <i>pkcA</i> is an essential gene and is activated in response to cell wall stress. Subsequently, we constructed and analyzed a non-essential <i>A</i>. <i>fumigatus pkcA</i><sup>G579R</sup> mutant, carrying a Gly579Arg substitution in the PkcA C1B regulatory domain. The <i>pkcA</i><sup>G579R</sup> mutation has a reduced activation of the downstream <u>M</u>itogen-<u>A</u>ctivated <u>P</u>rotein <u>K</u>inase, MpkA, resulting in the altered expression of genes encoding cell wall-related proteins, markers of endoplasmic reticulum stress and the unfolded protein response. Furthermore, PkcA<sup>G579R</sup> is involved in the formation of proper conidial architecture and protection to oxidative damage. The <i>pkcA</i><sup>G579R</sup> mutant elicits increased production of TNF-α and phagocytosis but it has no impact on virulence in a murine model of invasive pulmonary aspergillosis. These results highlight the importance of PkcA to the CWI pathway but also indicated that additional regulatory circuits may be involved in the biosynthesis and/or reinforcement of the <i>A</i>. <i>fumigatus</i> cell wall during infection.</p></div
    corecore