54 research outputs found

    Gold nanoparticles (AuNPs) impair LPS-driven immune responses by promoting a tolerogenic-like dendritic cell phenotype with altered endosomal structures

    Get PDF
    Dendritic cells (DCs) shape immune responses by influencing T-cell activation. Thus, they are considered both an interesting model for studying nano-immune interactions and a promising target for nano-based biomedical applications. However, the accentuated ability of nanoparticles (NPs) to interact with biomolecules may have an impact on DC function that poses an unexpected risk of unbalanced immune reactions. Here, we investigated the potential effects of gold nanoparticles (AuNPs) on DC function and the consequences for effector and memory T-cell responses in the presence of the microbial inflammatory stimulus lipopolysaccharide (LPS). Overall, we found that, in the absence of LPS, none of the tested NPs induced a DC response. However, whereas 4-, 8-, and 11 nm AuNPs did not modulate LPS-dependent immune responses, 26 nm AuNPs shifted the phenotype of LPS-activated DCs toward a tolerogenic state, characterized by downregulation of CD86, IL-12 and IL-27, upregulation of ILT3, and induction of class E compartments. Moreover, this DC phenotype was less proficient in promoting Th1 activation and central memory T-cell proliferation. Taken together, these findings support the perception that AuNPs are safe under homeostatic conditions; however, particular care should be taken in patients experiencing a current infection or disorders of the immune system

    Innate Memory Reprogramming by Gold Nanoparticles Depends on the Microbial Agents That Induce Memory

    Get PDF
    Innate immune memory, the ability of innate cells to react in a more protective way to secondary challenges, is induced by exposure to infectious and other exogeous and endogenous agents. Engineered nanoparticles are particulate exogenous agents that, as such, could trigger an inflammatory reaction in monocytes and macrophages and could therefore be also able to induce innate memory. Here, we have evaluated the capacity of engineered gold nanoparticles (AuNPs) to induce a memory response or to modulate the memory responses induced by microbial agents. Microbial agents used were in soluble vs. particulate form (MDP and the gram-positive bacteria Staphylococcus aureus; β-glucan and the β-glucan-producing fungi C. albicans), and as whole microrganisms that were either killed (S. aureus, C. albicans) or viable (the gram-negative bacteria Helicobacter pylori). The memory response was assessed in vitro, by exposing human primary monocytes from 2-7 individual donors to microbial agents with or without AuNPs (primary response), then resting them for 6 days to allow return to baseline, and eventually challenging them with LPS (secondary memory response). Primary and memory responses were tested as production of the innate/inflammatory cytokine TNFα and other inflammatory and anti-inflammatory factors. While inactive on the response induced by soluble microbial stimuli (muramyl dipeptide -MDP-, β-glucan), AuNPs partially reduced the primary response induced by whole microorganisms. AuNPs were also unable to directly induce a memory response but could modulate stimulus-induced memory in a circumscribed fashion, limited to some agents and some cytokines. Thus, the MDP-induced tolerance in terms of TNFα production was further exacerbated by co-priming with AuNPs, resulting in a less inflammatory memory response. Conversely, the H. pylori-induced tolerance was downregulated by AuNPs only relative to the anti-inflammatory cytokine IL-10, which would lead to an overall more inflammatory memory response. These effects of AuNPs may depend on a differential interaction/association between the reactive particle surfaces and the microbial components and agents, which may lead to a change in the exposure profiles. As a general observation, however, the donor-to-donor variability in memory response profiles and reactivity to AuNPs was substantial, suggesting that innate memory depends on the individual history of exposures.This work was supported by the EU Commission H2020 projects PANDORA (GA 671881) and ENDONANO (GA 812661), the Italian MIUR InterOmics Flagship projects MEMORAT and MAME, the Italian MIUR/PRIN-20173ZECCM, the Priority program ACBN (Allergy Cancer BioNano Research Centre) of the University of Salzburg, the Cancer Cluster Salzburg, the Research Grant from the University of Salzburg, and the Austrian Science Fund (FWF) Grant Nr. P 29941

    Addressing nanomaterial immunosafety by evaluating innate immunity across living species

    Get PDF
    The interaction of a living organism with external foreign agents is a central issue for its survival and adaptation to the environment. Nanosafety should be considered within this perspective, and it should be examined that how different organisms interact with engineered nanomaterials (NM) by either mounting a defensive response or by physiologically adapting to them. Herein, the interaction of NM with one of the major biological systems deputed to recognition of and response to foreign challenges, i.e., the immune system, is specifically addressed. The main focus is innate immunity, the only type of immunity in plants, invertebrates, and lower vertebrates, and that coexists with adaptive immunity in higher vertebrates. Because of their presence in the majority of eukaryotic living organisms, innate immune responses can be viewed in a comparative context. In the majority of cases, the interaction of NM with living organisms results in innate immune reactions that eliminate the possible danger with mechanisms that do not lead to damage. While in some cases such interaction may lead to pathological consequences, in some other cases beneficial effects can be identified

    Probing the immune responses to nanoparticles across environmental species. A perspective of the EU Horizon 2020 project PANDORA

    Get PDF
    Understanding how engineered nanomaterials affect immune responses of living organisms requires a strong collaborative effort between immunologists, toxicologists, ecologists, physiologists, inorganic chemists, nanomaterial scientists and experts in law and risk management. This perspective aims to provide a new viewpoint on the interaction between engineered nanomaterials and the immune defensive systems across living species, gained within the EU Horizon 2020 project PANDORA. We consider the effects of nanoparticle exposure on immune functions in plants, marine and terrestrial invertebrates and their relation to the current state of knowledge for vertebrates (in particular humans). These studies can shed light on the broader perspective of defensive and homeostatic mechanisms (immunity, inflammation, stress responses, microbiota, stem cell differentiation) suggesting ways to: i) perform a comparative analysis of the nanoparticle impact on immunity across model organisms; ii) inspire best practices in experimental methodologies for nanosafety/nanotoxicity studies; iii) regroup and harmonise fragmented research activities; iv) improve knowledge transfer strategies and nano-security; v) propose innovative tools and realistic solutions, thereby helping in identifying future research needs and tackling their challenges

    The NLRP3 Inflammasome and Its Role in the Pathogenicity of Leukemia

    No full text
    Chronic inflammation contributes to the development and progression of various tumors. Especially where the inflammation is mediated by cells of the innate immune system, the NLRP3 inflammasome plays an important role, as it senses and responds to a variety of exogenous and endogenous pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). The NLRP3 inflammasome is responsible for the maturation and secretion of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18 and for the induction of a type of inflammatory cell death known as pyroptosis. Overactivation of the NLRP3 inflammasome can be a driver of various diseases. Since leukemia is known to be an inflammation-driven cancer and IL-1β is produced in elevated levels by leukemic cells, research on NLRP3 in the context of leukemia has increased in recent years. In this review, we summarize the current knowledge on leukemia-promoting inflammation and, in particular, the role of the NLRP3 inflammasome in different types of leukemia. Furthermore, we examine a connection between NLRP3, autophagy and leukemia

    The NLRP3 Inflammasome and Its Role in the Pathogenicity of Leukemia

    No full text
    Chronic inflammation contributes to the development and progression of various tumors. Especially where the inflammation is mediated by cells of the innate immune system, the NLRP3 inflammasome plays an important role, as it senses and responds to a variety of exogenous and endogenous pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). The NLRP3 inflammasome is responsible for the maturation and secretion of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18 and for the induction of a type of inflammatory cell death known as pyroptosis. Overactivation of the NLRP3 inflammasome can be a driver of various diseases. Since leukemia is known to be an inflammation-driven cancer and IL-1β is produced in elevated levels by leukemic cells, research on NLRP3 in the context of leukemia has increased in recent years. In this review, we summarize the current knowledge on leukemia-promoting inflammation and, in particular, the role of the NLRP3 inflammasome in different types of leukemia. Furthermore, we examine a connection between NLRP3, autophagy and leukemia

    Signaling mechanisms, interaction partners, and target genes of STAT6

    No full text
    Like other members of the signal transducer and activator of transcription (STAT) family of proteins, STAT6 has a dual role as signaling molecule and transcription factor. STAT6 is tightly connected to IL-4 and IL-13 signaling, and plays a key role in TH2 polarization of the immune system, as studies on knockout mice have illustrated impressively. The last 5 years have yielded many new insights into various aspects of STAT6 signaling. While the canonical view of STAT6 activation and biology remains largely unaltered, significant progress has been made in the identification of factors involved in STAT6 activity and STAT6-mediated gene regulation. About 35 different STAT6 target genes have been identified to date, many of which are involved in TH2-associated processes. This review summarizes the existing data on STAT6. Older landmark studies are discussed, as well as surprising recent additions, like hints on inactive STAT6 dimers and the discovery of novel STAT6 isoforms. There is a particular focus on molecular aspects such as modifications of STAT6 and regulation of STAT6-dependent genes, since studies on these aspects have been particularly fruitful during the last few years

    Surface marker expression upon stimulation with low LPS concentrations.

    No full text
    <p>Cells were plated and induced as described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0113840#pone-0113840-g003" target="_blank">Figure 3</a>. After 16 h of induction, cells were harvested and stained for the expression of surface markers using appropriate amounts of fluorescent-labelled antibodies. The median of the fluorescence intensities of 1×10<sup>4</sup> cells each was recorded by flow cytometry. Fold change values were calculated to compare individual cell types with different compensation settings. Results show mean and SD of at least four independent experiments per cell type. Statistical analysis was performed as described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0113840#pone-0113840-g003" target="_blank">Figure 3</a>.</p
    corecore