474 research outputs found

    In situ calibration of a new chemcatcher configuration for the determination of polar organic micropollutants in wastewater effluent.

    Get PDF
    Passive sampling is proposed as an alternative to traditional grab- and composite-sampling modes. Investigated here is a novel passive sampler configuration, the Chemcatcher containing an Atlantic HLB disk covered by a 0.2μm poly(ether sulfone) membrane, for monitoring polar organic micropollutants (personal care products, pharmaceuticals and illicit drugs) in wastewater effluent. In situ calibration showed linear uptake for the majority of detected micropollutants over 9 days of deployment. Sampling rates (RS) were determined for 59 compounds and were generally in the range of 0.01−0.10 L day−1. The Chemcatcher was also suitable for collecting chiral micropollutants and maintaining their enantiomeric distribution during deployment. This is essential for their future use in developing moreaccurate environmental risk assessments at the enantiomeric level. Application of calibration data in a subsequent monitoring study showed that the concentration estimated for 92% of micropollutants was within a factor of 2 of the known concentration. However, their application in a legislative context will require further understanding of the properties and mechanisms controlling micropollutant uptake to improve the accuracy of reported concentrations

    Diversity and complexity: becoming a teacher in England in 2015-16

    Get PDF
    This paper is based on a profile of Initial Teacher Training (ITT) provision in England, which was developed as part of a wider research programme on Diversity in Teacher Education (DiTE) based at Bath Spa University (Whiting et al, 2016). It provides a new topography of routes to qualified teacher status (QTS) in England for the academic year 2015-16, along similar lines to an exercise undertaken for an earlier research programme, the ESRC funded Modes of Teacher Education (MOTE) projects conducted in the 1990s (Barrett et al, 1992; Whiting et al, 1996; Furlong et al, 2000). The allocations and census data published by the National College for Teaching and Leadership (NCTL) provide the basis for this new topography, with additional material from a range of sources, mostly online. Reflections on further changes in policy discourse since the year of analysis hint at an acknowledgement of the role of Higher Education (HE) and a reduced emphasis on the much vaunted focus on ‘school-led’ routes. However, there is little to reassure either ITT providers, or potential candidates, of a long term plan aimed at halting the trajectory towards over-complexity and incoherence. The analysis raises important questions about the quality of such diverse teacher education provision, the nature of partnership between higher education institutions and schools, and the impact of reform on the identities of those training to teach

    Simultaneous ozonation of 90 organic micropollutants including illicit drugs and their metabolites in different water matrices.

    Get PDF
    The ozonation of 90 chemically diverse organic micropollutants (OMPs) including four classes of illicit drugs and their metabolites was studied in pure buffered water, tap water and wastewater effluent at three specific ozone doses and three pH levels. The second order rate constants for the reaction of 40 OMPs with ozone were known and span across 8 orders of magnitude, from below 1 M-1 s-1 to above 107 M-1 s-1. 47 of the tested OMPs were removed to at least 90% at the highest specific ozone dose of 0.3 mM O3 per mM C at pH 7. However, most illicit drugs, including cocainics, amphetamines and ecstasy-group compounds, were ozone-resistant due to their lack of ozone-reactive functional groups. Exceptions included some opioids and the cocaine biomarker anhydroecgonine methylester which contain olefinic bonds and/or activated benzene rings. Different removal trends at different pH for OMPs were due to the combined effect of target compound speciation and ozone stability, leading to elimination of less than 70% for all OMPs at pH 11. In both tap water and wastewater effluent scavenging by matrix components led to lower ozone exposure compared to pure buffered water and consequently lower removal of OMPs. This multi-compound ozonation study utilised liquid chromatography-mass spectrometry to provide a large dataset on the removal of environmentally relevant OMPs, including those of interest for drinking water regulations. Besides including pharmaceutically active compounds that have not been studied with ozone before (e.g. gliclazide, anhydroecgonine methylester, quetiapine, 6-monoacetylmorphine), this study simultaneously shows ozonation data for a wide range of illicit drugs

    Stereoselective biodegradation of amphetamine and methamphetamine in river microcosms

    Get PDF
    AbstractHere presented for the first time is the enantioselective biodegradation of amphetamine and methamphetamine in river microcosm bioreactors. The aim of this investigation was to test the hypothesis that mechanisms governing the fate of amphetamine and methamphetamine in the environment are mostly stereoselective and biological in nature. Several bioreactors were studied over the duration of 15 days (i) in both biotic and abiotic conditions, (ii) in the dark or exposed to light and (iii) in the presence or absence of suspended particulate matter. Bioreactor samples were analysed using SPE-chiral-LC-(QTOF)MS methodology. This investigation has elucidated the fundamental mechanism for degradation of amphetamine and methamphetamine as being predominantly biological in origin. Furthermore, stereoselectivity and changes in enantiomeric fraction (EF) were only observed under biotic conditions. Neither amphetamine nor methamphetamine appeared to demonstrate adsorption to suspended particulate matter. Our experiments also demonstrated that amphetamine and methamphetamine were photo-stable. Illicit drugs are present in the environment at low concentrations but due to their pseudo-persistence and non-racemic behaviour, with two enantiomers revealing significantly different potency (and potentially different toxicity towards aquatic organisms) the risk posed by illicit drugs in the environment should not be under- or over-estimated. The above results demonstrate the need for re-evaluation of the procedures utilised in environmental risk assessment, which currently do not recognise the importance of the phenomenon of chirality in pharmacologically active compounds

    RobotAssist - A platform for human robot interaction research

    Full text link
    This paper presents RobotAssist, a robotic platform designed for use in human robot interaction research and for entry into Robocup@Home competition. The core autonomy of the system is implemented as a component based software framework that allows for integration of operating system independent components, is designed to be expandable and integrates several layers of reasoning. The approaches taken to develop the core capabilities of the platform are described, namely: path planning in a social context, Simultaneous Localisation and Mapping (SLAM), human cue sensing and perception, manipulatable object detection and manipulation

    Co-selection for antibiotic resistance by environmental contaminants

    Get PDF
    This is the final version. Available from Springer Nature via the DOI in this record. The environment is increasingly recognised as a hotspot for the selection and dissemination of antibiotic resistant bacteria and antibiotic resistance genes. These can be selected for by antibiotics and non-antibiotic agents (such as metals and biocides), with the evidence to support this well established by observational and experimental studies. However, there is emerging evidence to suggest that plant protection products (such as herbicides), and non-antibiotic drugs (such as chemotherapeutic agents), can also co-select for antibiotic resistance. This review aims to provide an overview of four classes of non-antibiotic agents (metals, biocides, plant protection products, and non-antibiotic drugs) and how they may co-select for antibiotic resistance, with a particular focus on the environment. It also aims to identify key knowledge gaps that should be addressed in future work, to better understand these potential co-selective agents.BBSRC/AstraZenecaCDT/AstraZenecaNatural Environment Research Council (NERC)Natural Environment Research Council (NERC

    Comparative assessment of filtration- and precipitation-based methods for the concentration of SARS-CoV-2 and other viruses from wastewater

    Get PDF
    Wastewater-based epidemiology (WBE) has been widely used to track levels of SARS-CoV-2 infection in the community during the COVID-19 pandemic. Due to the rapid expansion of WBE, many methods have been used and developed for virus concentration and detection in wastewater. However, very little information is available on the relative performance of these approaches. In this study, we compared the performance of five commonly used wastewater concentration methods for the detection and quantification of pathogenic viruses (SARS-CoV-2, norovirus, rotavirus, influenza, and measles viruses), fecal indicator viruses (crAssphage, adenovirus, pepper mild mottle virus), and process control viruses (murine norovirus and bacteriophage Phi6) in laboratory spiking experiments. The methods evaluated included those based on either ultrafiltration (Amicon centrifugation units and InnovaPrep device) or precipitation (using polyethylene glycol [PEG], beef extract-enhanced PEG, and ammonium sulfate). The two best methods were further tested on 115 unspiked wastewater samples. We found that the volume and composition of the wastewater and the characteristics of the target viruses greatly affected virus recovery, regardless of the method used for concentration. All tested methods are suitable for routine virus concentration; however, the Amicon ultrafiltration method and the beef extract-enhanced PEG precipitation methods yielded the best recoveries. We recommend the use of ultrafiltration-based concentration for low sample volumes with high virus titers and ammonium levels and the use of precipitation-based concentration for rare pathogen detection in high-volume samples. IMPORTANCE As wastewater-based epidemiology is utilized for the surveillance of COVID-19 at the community level in many countries, it is crucial to develop and validate reliable methods for virus detection in sewage. The most important step in viral detection is the efficient concentration of the virus particles and/or their genome for subsequent analysis. In this study, we compared five different methods for the detection and quantification of different viruses in wastewater. We found that dead-end ultrafiltration and beef extract-enhanced polyethylene glycol precipitation were the most reliable approaches. We also discovered that sample volume and physico-chemical properties have a great effect on virus recovery. Hence, wastewater process methods and start volumes should be carefully selected in ongoing and future wastewater-based national surveillance programs for COVID-19 and beyond

    Comparative assessment of filtration- and precipitation-based methods for the concentration of SARS-CoV-2 and other viruses from wastewater

    Get PDF
    Wastewater-based epidemiology (WBE) has been widely used to track levels of SARS-CoV-2 infection in the community during the COVID-19 pandemic. Due to the rapid expansion of WBE, many methods have been used and developed for virus concentration and detection in wastewater. However, very little information is available on the relative performance of these approaches. In this study, we compared the performance of five commonly used wastewater concentration methods for the detection and quantification of pathogenic viruses (SARS-CoV-2, norovirus, rotavirus, influenza, and measles viruses), fecal indicator viruses (crAssphage, adenovirus, pepper mild mottle virus), and process control viruses (murine norovirus and bacteriophage Phi6) in laboratory spiking experiments. The methods evaluated included those based on either ultrafiltration (Amicon centrifugation units and InnovaPrep device) or precipitation (using polyethylene glycol [PEG], beef extract-enhanced PEG, and ammonium sulfate). The two best methods were further tested on 115 unspiked wastewater samples. We found that the volume and composition of the wastewater and the characteristics of the target viruses greatly affected virus recovery, regardless of the method used for concentration. All tested methods are suitable for routine virus concentration; however, the Amicon ultrafiltration method and the beef extract-enhanced PEG precipitation methods yielded the best recoveries. We recommend the use of ultrafiltration-based concentration for low sample volumes with high virus titers and ammonium levels and the use of precipitation-based concentration for rare pathogen detection in high-volume samples
    • …
    corecore