734 research outputs found
Most Sub-Arcsecond Companions of Kepler Exoplanet Candidate Host Stars are Gravitationally Bound
Using the known detection limits for high-resolution imaging observations and
the statistical properties of true binary and line-of-sight companions, we
estimate the binary fraction of {\it Kepler} exoplanet host stars. Our speckle
imaging programs at the WIYN 3.5-m and Gemini North 8.1-m telescopes have
observed over 600 {\it Kepler} objects of interest (KOIs) and detected 49
stellar companions within 1 arcsecond. Assuming binary stars follow a
log-normal period distribution for an effective temperature range of 3,000 to
10,000 K, then the model predicts that the vast majority of detected
sub-arcsecond companions are long period ( years), gravitationally bound
companions. In comparing the model predictions to the number of real detections
in both observational programs, we conclude that the overall binary fraction of
host stars is similar to the 40-50\% rate observed for field stars
Understanding The Effects Of Stellar Multiplicity On The Derived Planet Radii From Transit Surveys: Implications for Kepler, K2, and TESS
We present a study on the effect of undetected stellar companions on the
derived planetary radii for the Kepler Objects of Interest (KOIs). The current
production of the KOI list assumes that the each KOI is a single star. Not
accounting for stellar multiplicity statistically biases the planets towards
smaller radii. The bias towards smaller radii depends on the properties of the
companion stars and whether the planets orbit the primary or the companion
stars. Defining a planetary radius correction factor , we find that if the
KOIs are assumed to be single, then, {\it on average}, the planetary radii may
be underestimated by a factor of . If typical
radial velocity and high resolution imaging observations are performed and no
companions are detected, this factor reduces to . The correction factor is dependent upon the primary
star properties and ranges from for A and F
stars to for K and M stars. For missions like
K2 and TESS where the stars may be closer than the stars in the Kepler target
sample, observational vetting (primary imaging) reduces the radius correction
factor to . Finally, we show that if the
stellar multiplicity rates are not accounted for correctly, occurrence rate
calculations for Earth-sized planets may overestimate the frequency of small
planets by as much as \%.Comment: 10 pages, 6 Figures, Accepted for publication in The Astrophysical
Journal (Fix typo in Equation 6 of original astroph submission; correction
also submitted to Journal
Speckle Camera Observations for the NASA Kepler Mission Follow-up Program
We present the first results from a speckle imaging survey of stars classified as candidate exoplanet host stars discovered by the Kepler mission. We use speckle imaging to search for faint companions or closely aligned background stars that could contribute flux to the Kepler light curves of their brighter neighbors. Background stars are expected to contribute significantly to the pool of false positive candidate transiting exoplanets discovered by the Kepler mission, especially in the case that the faint neighbors are eclipsing binary stars. Here, we describe our Kepler follow-up observing program, the speckle imaging camera used, our data reduction, and astrometric and photometric performance. Kepler stars range from R = 8 to 16 and our observations attempt to provide background non-detection limits 5-6 mag fainter and binary separations of ~0.05-2.0 arcsec. We present data describing the relative brightness, separation, and position angles for secondary sources, as well as relative plate limits for non-detection of faint nearby stars around each of 156 target stars. Faint neighbors were found near 10 of the stars
Exclusion of Stellar Companions to Exoplanet Host Stars
Given the frequency of stellar multiplicity in the solar neighborhood, it is
important to study the impacts this can have on exoplanet properties and
orbital dynamics. There have been numerous imaging survey projects established
to detect possible low-mass stellar companions to exoplanet host stars. Here we
provide the results from a systematic speckle imaging survey of known exoplanet
host stars. In total, 71 stars were observed at 692~nm and 880~nm bands using
the Differential Speckle Survey Instrument (DSSI) at the Gemini-North
Observatory. Our results show that all but 2 of the stars included in this
sample have no evidence of stellar companions with luminosities down to the
detection and projected separation limits of our instrumentation. The
mass-luminosity relationship is used to estimate the maximum mass a stellar
companion can have without being detected. These results are used to discuss
the potential for further radial velocity follow-up and interpretation of
companion signals.Comment: 11 pages, 4 figures, 3 tables, accepted for publication in A
Observations of Binary Stars with the Differential Speckle Survey Instrument. III. Measures below the Diffraction Limit of the WIYN Telescope
In this paper, we study the ability of CCD- and electron-multiplying-CCD-based speckle imaging to obtain reliable astrometry and photometry of binary stars below the diffraction limit of the WIYN 3.5 m Telescope. We present a total of 120 measures of binary stars, 75 of which are below the diffraction limit. The measures are divided into two groups that have different measurement accuracy and precision. The first group is composed of standard speckle observations, that is, a sequence of speckle images taken in a single filter, while the second group consists of paired observations where the two observations are taken on the same observing run and in different filters. The more recent paired observations were taken simultaneously with the Differential Speckle Survey Instrument, which is a two-channel speckle imaging system. In comparing our results to the ephemeris positions of binaries with known orbits, we find that paired observations provide the opportunity to identify cases of systematic error in separation below the diffraction limit and after removing these from consideration, we obtain a linear measurement uncertainty of 3-4 mas. However, if observations are unpaired or if two observations taken in the same filter are paired, it becomes harder to identify cases of systematic error, presumably because the largest source of this error is residual atmospheric dispersion, which is color dependent. When observations are unpaired, we find that it is unwise to report separations below approximately 20 mas, as these are most susceptible to this effect. Using the final results obtained, we are able to update two older orbits in the literature and present preliminary orbits for three systems that were discovered by Hipparcos
A Comparison of Spectroscopic versus Imaging Techniques for Detecting Close Companions to Kepler Objects of Interest
(Abbreviated) Kepler planet candidates require both spectroscopic and imaging
follow-up observations to rule out false positives and detect blended stars.
[...] In this paper, we examine a sample of 11 Kepler host stars with
companions detected by two techniques -- near-infrared adaptive optics and/or
optical speckle interferometry imaging, and a new spectroscopic deblending
method. We compare the companion Teff and flux ratios (F_B/F_A, where A is the
primary and B is the companion) derived from each technique, and find no cases
where both companion parameters agree within 1sigma errors. In 3/11 cases the
companion Teff values agree within 1sigma errors, and in 2/11 cases the
companion F_B/F_A values agree within 1sigma errors. Examining each Kepler
system individually considering multiple avenues (isochrone mapping, contrast
curves, probability of being bound), we suggest two cases for which the
techniques most likely agree in their companion detections (detect the same
companion star). Overall, our results support the advantage the spectroscopic
deblending technique has for finding very close-in companions (0.02-0.05") that are not easily detectable with imaging. However, we
also specifically show how high-contrast AO and speckle imaging observations
detect companions at larger separations (0.02-0.05") that are
missed by the spectroscopic technique, provide additional information for
characterizing the companion and its potential contamination (e.g., PA,
separation, m), and cover a wider range of primary star effective
temperatures. The investigation presented here illustrates the utility of
combining the two techniques to reveal higher-order multiples in known
planet-hosting systems.Comment: Accepted to AJ. 40 pages, 12 figure
Limits on Stellar Companions to Exoplanet Host Stars With Eccentric Planets
Though there are now many hundreds of confirmed exoplanets known, the
binarity of exoplanet host stars is not well understood. This is particularly
true of host stars which harbor a giant planet in a highly eccentric orbit
since these are more likely to have had a dramatic dynamical history which
transferred angular momentum to the planet. Here we present observations of
four exoplanet host stars which utilize the excellent resolving power of the
Differential Speckle Survey Instrument (DSSI) on the Gemini North telescope.
Two of the stars are giants and two are dwarfs. Each star is host to a giant
planet with an orbital eccentricity > 0.5 and whose radial velocity data
contain a trend in the residuals to the Keplerian orbit fit. These observations
rule out stellar companions 4-8 magnitudes fainter than the host star at
passbands of 692nm and 880nm. The resolution and field-of-view of the
instrument result in exclusion radii of 0.05-1.4 arcsecs which excludes stellar
companions within several AU of the host star in most cases. We further provide
new radial velocities for the HD 4203 system which confirm that the linear
trend previously observed in the residuals is due to an additional planet.
These results place dynamical constraints on the source of the planet's
eccentricities, constraints on additional planetary companions, and informs the
known distribution of multiplicity amongst exoplanet host stars.Comment: 10 pages, 7 figures, 2 tables, accepted to Ap
Observations of Binary Stars with the Differential Speckle Survey Instrument. II. Hipparcos Stars Observed in 2010 January and June
The results of 497 speckle observations of Hipparcos stars and selected other targets are presented. Of these, 367 were resolved into components and 130 were unresolved. The data were obtained using the Differential Speckle Survey Instrument at the WIYN 3.5 m Telescope. (The WIYN Observatory is a joint facility of the University of Wisconsin-Madison, Indiana University, Yale University, and the National Optical Astronomy Observatories.) Since the first paper in this series, the instrument has been upgraded so that it now uses two electron-multiplying CCD cameras. The measurement precision obtained when comparing to ephemeris positions of binaries with very well known orbits is approximately 1-2 mas in separation and better than 0°.6 in position angle. Differential photometry is found to be in very good agreement with Hipparcos measures in cases where the comparison is most relevant. We derive preliminary orbits for two systems
- …