2,412 research outputs found

    Associations between Proprioceptive Neural Pathway Structural Connectivity and Balance in People with Multiple Sclerosis

    Get PDF
    Mobility and balance impairments are a hallmark of multiple sclerosis (MS), affecting nearly half of patients at presentation and resulting in decreased activity and participation, falls, injuries, and reduced quality of life. A growing body of work suggests that balance impairments in people with mild MS are primarily the result of deficits in proprioception, the ability to determine body position in space in the absence of vision. A better understanding of the pathophysiology of balance disturbances in MS is needed to develop evidence-based rehabilitation approaches. The purpose of the current study was to (1) map the cortical proprioceptive pathway in vivo using diffusion-weighted imaging and (2) assess associations between proprioceptive pathway white matter microstructural integrity and performance on clinical and behavioral balance tasks. We hypothesized that people with MS (PwMS) would have reduced integrity of cerebral proprioceptive pathways, and that reduced white matter microstructure within these tracts would be strongly related to proprioceptive-based balance deficits. We found poorer balance control on proprioceptive-based tasks and reduced white matter microstructural integrity of the cortical proprioceptive tracts in PwMS compared with age-matched healthy controls (HC). Microstructural integrity of this pathway in the right hemisphere was also strongly associated with proprioceptive-based balance control in PwMS and controls. Conversely, while white matter integrity of the right hemisphere’s proprioceptive pathway was significantly correlated with overall balance performance in HC, there was no such relationship in PwMS. These results augment existing literature suggesting that balance control in PwMS may become more dependent upon (1) cerebellar-regulated proprioceptive control, (2) the vestibular system, and/or (3) the visual system

    Collective Sideband Cooling in an Optical Ring Cavity

    Get PDF
    We propose a cavity based laser cooling and trapping scheme, providing tight confinement and cooling to very low temperatures, without degradation at high particle densities. A bidirectionally pumped ring cavity builds up a resonantly enhanced optical standing wave which acts to confine polarizable particles in deep potential wells. The particle localization yields a coupling of the degenerate travelling wave modes via coherent photon redistribution. This induces a splitting of the cavity resonances with a high frequency component, that is tuned to the anti-Stokes Raman sideband of the particles oscillating in the potential wells, yielding cooling due to excess anti-Stokes scattering. Tight confinement in the optical lattice together with the prediction, that more than 50% of the trapped particles can be cooled into the motional ground state, promise high phase space densities.Comment: 4 pages, 1 figur

    Cavity cooling of a single atom

    Full text link
    All conventional methods to laser-cool atoms rely on repeated cycles of optical pumping and spontaneous emission of a photon by the atom. Spontaneous emission in a random direction is the dissipative mechanism required to remove entropy from the atom. However, alternative cooling methods have been proposed for a single atom strongly coupled to a high-finesse cavity; the role of spontaneous emission is replaced by the escape of a photon from the cavity. Application of such cooling schemes would improve the performance of atom cavity systems for quantum information processing. Furthermore, as cavity cooling does not rely on spontaneous emission, it can be applied to systems that cannot be laser-cooled by conventional methods; these include molecules (which do not have a closed transition) and collective excitations of Bose condensates, which are destroyed by randomly directed recoil kicks. Here we demonstrate cavity cooling of single rubidium atoms stored in an intracavity dipole trap. The cooling mechanism results in extended storage times and improved localization of atoms. We estimate that the observed cooling rate is at least five times larger than that produced by free-space cooling methods, for comparable excitation of the atom

    Ultracold atoms in optical lattices generated by quantized light fields

    Full text link
    We study an ultracold gas of neutral atoms subject to the periodic optical potential generated by a high-QQ cavity mode. In the limit of very low temperatures, cavity field and atomic dynamics require a quantum description. Starting from a cavity QED single atom Hamiltonian we use different routes to derive approximative multiparticle Hamiltonians in Bose-Hubbard form with rescaled or even dynamical parameters. In the limit of large enough cavity damping the different models agree. Compared to free space optical lattices, quantum uncertainties of the potential and the possibility of atom-field entanglement lead to modified phase transition characteristics, the appearance of new phases or even quantum superpositions of different phases. Using a corresponding effective master equation, which can be numerically solved for few particles, we can study time evolution including dissipation. As an example we exhibit the microscopic processes behind the transition dynamics from a Mott insulator like state to a self-ordered superradiant state of the atoms, which appears as steady state for transverse atomic pumping.Comment: 17 pages, 10 figures, Published versio

    Cavity Assisted Nondestructive Laser Cooling of Atomic Qubits

    Full text link
    We analyze two configurations for laser cooling of neutral atoms whose internal states store qubits. The atoms are trapped in an optical lattice which is placed inside a cavity. We show that the coupling of the atoms to the damped cavity mode can provide a mechanism which leads to cooling of the motion without destroying the quantum information.Comment: 12 page

    Probing superfluidity of periodically trapped ultracold atoms in a cavity by transmission spectroscopy

    Full text link
    We study a system of periodic Bose condensed atoms coupled to cavity photons using the input-output formalism. We show that the cavity will either act as a through pass Lorentzian filter when the superfluid fraction of the condensate is minimum or completely reflect the input field when the superfluid fraction is maximum. We show that by monitoring the ratio between the transmitted field and the reflected field, one can estimate the superfluid fraction.Comment: 3 page

    Trapping of Single Atoms with Single Photons in Cavity QED

    Get PDF
    Two recent experiments have reported the trapping of individual atoms inside optical resonators by the mechanical forces associated with single photons [Hood et al., Science 287, 1447 (2000) and Pinkse et al., Nature 404, 365 (2000)]. Here we analyze the trapping dynamics in these settings, focusing on two points of interest. Firstly, we investigate the extent to which light-induced forces in these experiments are distinct from their free-space counterparts. Secondly, we explore the quantitative features of the resulting atomic motion and how these dynamics are mapped onto variations of the intracavity field. Not surprisingly, qualitatively distinct atomic dynamics arise as the coupling and dissipative rates are varied. For the experiment of Hood et al., we show that atomic motion is largely conservative and is predominantly in radial orbits transverse to the cavity axis. A comparison with the free-space theory demonstrates that the fluctuations of the dipole force are suppressed by an order of magnitude. This effect is based upon the Jaynes-Cummings eigenstates of the atom-cavity system and represents qualitatively new physics for optical forces at the single-photon level. By contrast, even in a regime of strong coupling in the experiment of Pinkse et al., there are only small quantitative distinctions between the free-space theory and the quantum theory, so it is not clear that description of this experiment as a novel single-quantum trapping effect is necessary. The atomic motion is strongly diffusive, leading to an average localization time comparable to the time for an atom to transit freely through the cavity and to a reduction in the ability to infer aspects of the atomic motion from the intracavity photon number.Comment: 19 pages, 22 figure files, REVTEX, corrected spelling, LaTeX now produces postscript which includes figures, minor changes to figures. Final version to be published in Physical Review A, expanded summary of results in introduction, minor changes to figures and tex

    Spin effects in Bose-Glass phases

    Full text link
    We study the mechanism of formation of Bose glass (BG) phases in the spin-1 Bose Hubbard model when diagonal disorder is introduced. To this aim, we analyze first the phase diagram in the zero-hopping limit, there disorder induces superposition between Mott insulator (MI) phases with different filling numbers. Then BG appears as a compressible but still insulating phase. The phase diagram for finite hopping is also calculated with the Gutzwiller approximation. The bosons' spin degree of freedom introduces another scattering channel in the two-body interaction modifying the stability of MI regions with respect to the action of disorder. This leads to some peculiar phenomena such as the creation of BG of singlets, for very strong spin correlation, or the disappearance of BG phase in some particular cases where fluctuations are not able to mix different MI regions

    Linear atomic quantum coupler

    Full text link
    In this paper, we develop the notion of the linear atomic quantum coupler. This device consists of two modes propagating into two waveguides, each of them includes a localized and/or a trapped atom. These waveguides are placed close enough to allow exchanging energy between them via evanescent waves. Each mode interacts with the atom in the same waveguide in the standard way, i.e. as the Jaynes-Cummings model (JCM), and with the atom-mode in the second waveguide via evanescent wave. We present the Hamiltonian for the system and deduce the exact form for the wavefunction. We investigate the atomic inversions and the second-order correlation function. In contrast to the conventional linear coupler, the atomic quantum coupler is able to generate nonclassical effects. The atomic inversions can exhibit long revival-collapse phenomenon as well as subsidiary revivals based on the competition among the switching mechanisms in the system. Finally, under certain conditions, the system can yield the results of the two-mode JCM.Comment: 14 pages, 3 figures; comments are most welcom

    Consensus Paper: Neurophysiological Assessments of Ataxias in Daily Practice

    Full text link
    The purpose of this consensus paper is to review electrophysiological abnormalities and to provide a guideline of neurophysiological assessments in cerebellar ataxias. All authors agree that standard electrophysiological methods should be systematically applied in all cases of ataxia to reveal accompanying peripheral neuropathy, the involvement of the dorsal columns, pyramidal tracts and the brainstem. Electroencephalography should also be considered, although findings are frequently non-specific. Electrophysiology helps define the neuronal systems affected by the disease in an individual patient and to understand the phenotypes of the different types of ataxia on a more general level. As yet, there is no established electrophysiological measure which is sensitive and specific of cerebellar dysfunction in ataxias. The authors agree that cerebellar brain inhibition (CBI), which is based on a paired-pulse transcranial magnetic stimulation (TMS) paradigm assessing cerebellar-cortical connectivity, is likely a useful measure of cerebellar function. Although its role in the investigation and diagnoses of different types of ataxias is unclear, it will be of interest to study its utility in this type of conditions. The authors agree that detailed clinical examination reveals core features of ataxia (i.e., dysarthria, truncal, gait and limb ataxia, oculomotor dysfunction) and is sufficient for formulating a differential diagnosis. Clinical assessment of oculomotor function, especially saccades and the vestibulo-ocular reflex (VOR) which are most easily examined both at the bedside and with quantitative testing techniques, is of particular help for differential diagnosis in many cases. Pure clinical measures, however, are not sensitive enough to reveal minute fluctuations or early treatment response as most relevant for pre-clinical stages of disease which might be amenable to study in future intervention trials. The authors agree that quantitative measures of ataxia are desirable as biomarkers. Methods are discussed that allow quantification of ataxia in laboratory as well as in clinical and real-life settings, for instance at the patients' home. Future studies are needed to demonstrate their usefulness as biomarkers in pharmaceutical or rehabilitation trials
    corecore