559 research outputs found
Study of thermal properties of the lunar regolith based on in situ temperature measurements and experiments on soil simulants
The experimental design and the development of a theory to interpret the experimental data from measurements of the thermal conductivity of lunar core samples. Measurements conducted while the lunar material is still in the core tube reduce the possibility of physical and chemical disturbances to the sample. The sample was heated externally by radiation at a known rate, the variation of temperature was measured at the surface of the core sample, and thermal conductivity was determined by comparing the observed temperature with the theoretically expected one
Recommended from our members
The Long Term Temperature Variation in the Lunar Subsurface
Introduction: Lunar surface heat flow values were measured directly during the Apollo missions. These experiments were carried out on Apollo 15 and 17 for about six years between July 7, 1971 and September 30, 1977. The heat flow values derived from these two measurement sites were 21 mW/m2 and 14 mW/m2 respectively [1]. Langseth et al. concluded the repre-sentative global lunar heat flow to be around 18 mW/m2 based on approximately the first 3 years of data until the end of the 1974 (see Figure 1).
Recently, Saito et al. (2006) succeeded in archiving the heat flow data from March 1 1976 until September 30th 1977 [2]. These data are very useful for identify-ing this very long-term variation because we could extend the period of data almost by a factor of two (from 3 years to 6 years) compared to the data ar-chived previously. Because an anomaly had occurred on April 28th, 1976 on the Apollo 15 experiment, the data of Apollo 15 could not be expanded. Therefore, the data obtained by Apollo 17 were used for long term analysis
Recommended from our members
Re-Analysis of HFT Data Using the Apollo Lunar Surface Gravimeter Data
Introduction: The Apollo Passive Seismic Experiment (PSE) was carried out on Apollo 12, 14, 15 and 16. Network observations of four seismic stations were performed for five years from 1972 to 1977. The PSE was a successful mission that informed us of the lunar crustal thickness and seismic velocity structure of the Moon from direct observations of the lunar interior (e.g. [1]). However, the paucity of seismic stations and the limited number of usable seismic events have been a major problem of lunar seismology. An additional observation point enables us to expand the network and the observable area will expand accordingly. Using a data set called the Work Tape, Kawamura et al. (2008) [2] showed that the Lunar Surface Gravimeter (LSG) on Apollo 17 functioned as a seismograph.
With this additional seismic station, we tried the first seismic analysis using the LSG data
Recommended from our members
Lost Apollo heat flow data suggest a different lunar bulk composition
Lunar surface heat flow values were measured on the Apollo missions between 1971 and 1977. However, the late-term data have been lost. We succeeded in archiving the data after March 1, 1976. We will introduce the new set of archived data
Recommended from our members
The Lunar Surface Gravimeter as a Lunar Seismograph
Introduction: The primary objective for the Lunar Surface Gravimeter (LSG) on Apollo 17 was to search for gravitational waves, but it failed in detecting them [1]. When the instrument was deployed on the Moon, the sensor beam could not be balanced in the proper equilibrium position. Consequently, the LSG was not able to function as originally designed. Lauderdale and Eichelman (1974) [1] concluded that “no provision has been made to supply data from the experiment to the National Space Science Data Center.” However, it was reported in Giganti et al. (1977) [2] that though they had not detected gravitational waves, after a series of reconfigurations the beam was recentered and the LSG gathered useful data. Besides the observation of gravitational waves, the LSG was also designed to observe seismic signals and tidal deformations [3]. According to Giganti et al. (1977) [2] LSG’s sensitivity covered the frequency range from 1~16Hz (Fig.1). There are several types of moonquakes reported, deep moonquakes, meteorite impacts, and high frequency teleseismic (HFT). Each of the moonquakes is known to have a resonant frequency around 1Hz and in addition, HFT has a predominant frequency around 10 Hz [4]. Therefore it is likely that the LSG was detecting the seismic events on the Moon. However, the LSG data have not been analyzed from a seismological point of view
Recommended from our members
Re-determination of deep moonquake sources using the Apollo 17 lunar surface gravimeter
We performed the first seismic analysis of deep moonquakes using the Apollo 17 Lunar Surface Gravimeter. We redetermined the seismic source of the deep moonquakes and evaluated the contribution of the LSG
Total and Methyl Mercury Contents and Distribution Characteristics in Cicada, Cryptotympana atrata (Fabricius)
Total and methyl mercury concentrations of cicada bodies, wings, and exuviae were investigated to study the mercury distribution characteristics. Results indicated that total and methyl mercury concentrations of cicada bodies were 2.64 mg/kg and 123.93 ng/g on average, respectively. In cicada tissues, total mercury concentrations were found to increase in the order of exuviae (0.50 mg/kg on average) < wings (0.98 mg/kg on average) < cicada bodies (2.64 mg/kg on average) and methyl mercury concentrations of cicada bodies were 123.93 ng/g on average and were the highest. Methyl mercury concentrations accounted for about 4.69% of total mercury in cicada bodies and most mercury was in inorganic forms in cicada. Sex differences of total mercury concentrations were significantly great (F = 8.433, p < 0.01) and total mercury concentrations of the males, which were 3.38 mg/kg on average, were much higher. Correlation analysis showed that neither total nor methyl mercury concentrations of cicada bodies was significantly related to the corresponding contents of soil (r = 0.0598, p > 0.05)
Search for astronomical neutrinos from blazar TXS 0506+056 in super-kamiokande
We report a search for astronomical neutrinos in the energy region from several GeV to TeV in the direction of the blazar TXS 0506+056 using the Super-Kamiokande detector following the detection of a 100 TeV neutrinos from the same location by the IceCube collaboration. Using Super-Kamiokande neutrino data across several data samples observed from 1996 April to 2018 February we have searched for both a total excess above known backgrounds across the entire period as well as localized excesses on smaller timescales in that interval. No significant excess nor significant variation in the observed event rate are found in the blazar direction. Upper limits are placed on the electron- and muon-neutrino fluxes at the 90% confidence level as 6.0 × 10−7 and 4.5 × 10−7–9.3 × 10−10 [erg cm−2 s−1], respectively
A codon substitution model that incorporates the effect of the GC contents, the gene density and the density of CpG islands of human chromosomes
Abstract Background Developing a model for codon substitutions is essential for the analyses of protein sequences. Recent studies on the mutation rates in the non-coding regions have shown that CpG mutation rates in the human genome are negatively correlated to the local GC content and to the densities of functional elements. This study aimed at understanding the effect of genomic features, namely, GC content, gene density, and frequency of CpG islands, on the rates of codon substitution in human chromosomes. Results Codon substitution rates of CpG to TpG mutations, TpG to CpG mutations, and non-CpG transitions and transversions in humans were estimated by comparing the coding regions of thousands of human and chimpanzee genes and inferring their ancestral sequences by using macaque genes as the outgroup. Since the genomic features are depending on each other, partial regression coefficients of these features were obtained. Conclusion The substitution rates of codons depend on gene densities of the chromosomes. Transcription-associated mutation is one such pressure. On the basis of these results, a model of codon substitutions that incorporates the effect of genomic features on codon substitution in human chromosomes was developed.</p
- …