3,822 research outputs found

    Higher Order Mode Damping in Superconducting Spoke Cavities

    Get PDF
    Parasitic higher order modes (HOMs) can be severely detrimental to the performance of superconducting cavities. For this reason, the mode spectrum and beam coupling strength must be examined in detail to determine which modes must be damped. One advantage of the spoke cavity geometry is that couplers can be placed on the outer body of the cavity rather than in the beam line space. We present an overview of the HOM properties of spoke cavities and methods for suppressing the most harmful ones

    Multipacting Analysis of High-Velocity Superconducting Spoke Resonators

    Get PDF
    Some of the advantages of superconducting spoke cavities are currently being investigated for the high-velocity regime. When determining a final, optimized geometry, one must consider the possible limiting effects multipacting could have on the cavity. We report on the results of analytical calculations and numerical simulations of multipacting electrons in superconducting spoke cavities and methods for reducing their impact

    Superconducting Spoke Cavities For High-Velocity Applications

    Get PDF
    To date, superconducting spoke cavities have been designed, developed, and tested for particle velocities up to β0 ~ to 0.6, but there is a growing interest in possible applications of multispoke cavities for high-velocity applications. We have explored the design parameter space for low-frequency, high-velocity, double-spoke superconducting cavities in order to determine how each design parameter affects the electromagnetic properties, in particular the surface electromagnetic fields and the shunt impedance. We present detailed design for cavities operating at 325 and 352 MHz and optimized for β0 = 0.82 and 1

    Engineering model 8-cm thruster subsystem

    Get PDF
    An Engineering Model (EM) 8 cm Ion Thruster Propulsion Subsystem was developed for operation at a thrust level 5 mN (1.1 mlb) at a specific impulse 1 sub sp = 2667 sec with a total system input power P sub in = 165 W. The system dry mass is 15 kg with a mercury-propellant-reservoir capacity of 8.75 kg permitting uninterrupted operation for about 12,500 hr. The subsystem can be started from a dormant condition in a time less than or equal to 15 min. The thruster has a design lifetime of 20,000 hr with 10,000 startup cycles. A gimbal unit is included to provide a thrust vector deflection capability of + or - 10 degrees in any direction from the zero position. The EM subsystem development program included thruster optimization, power-supply circuit optimization and flight packaging, subsystem integration, and subsystem acceptance testing including a cyclic test of the total propulsion package

    Regulation of the galactose pathway in Saccharomyces cerevisiae: induction of uridyl transferase mRNA and dependency on GAL4 gene function

    Get PDF
    In Saccharomyces cerevisiae, utilization of galactose requires four inducible enzyme activities. Three of these activities (galactose-1-phosphate uridyl transferase, EC 2.7.7.10; uridine diphosphogalactose 4-epimerase, EC 5.1.3.2; and galactokinase, EC 2.7.1.6) are specified by three tightly linked genes (GAL7, GAL10, and GAL1, respectively) on chromosome II, whereas the fourth, galactose transport, is specified by a gene (GAL2) located on chromosome XII. Although classic genetic analysis has revealed both positive and negative regulatory genes that coordinately affect the appearance of all four enzyme activities, neither the basic events leading to the appearance of enzyme activities nor the roles of the regulatory genes have yet been determined. Regulation of inducible enzyme activity could be mediated by events related to transcription, translation, or enzyme activation. For the purpose of studying galactose pathway induction and its regulation, we have developed an immunoprecipitation assay that enables us to detect the GAL7 specified uridyl transferase polypeptide in yeast extracts and among the polypeptides synthesized in an RNA-dependent in vitro translation system. Use of this immunoprecipitation assay in conjunction with in vivo labeling experiments demonstrates the presence of [(3)H]leucine-labeled transferase in extracts prepared from cells grown in galactose but not from cells grown in glucose. This galactose-specific induction of transferase polypeptide is mediated by the de novo appearance of a functional mRNA species whose synthetic capacity is detectable by the combination of in vitro translation and immunoprecipitation. The appearance of functional transferase mRNA depends on wild-type expression of the positive regulatory gene, GAL4. Cells carrying a nonsense (amber) mutation in the GAL4 gene fail to produce the transferase mRNA, whereas a nonsense suppressor of the GAL4 amber mutant regains the galactose-specific mRNA response. Our results establish that the induction of the GAL7 specified uridyl transferase activity is mediated by de novo appearance of a functional mRNA and that this galactose-specific response is dependent on a wild-type GAL4 gene product

    Fabrication and Measurements of 500 MHz Superconducting Double Spoke Cavity

    Get PDF
    The 500 MHz double spoke cavity has been designed for a high velocity application such as a compact electron accelerator at Center for Accelerator Science at Old Dominion University and is being built at Jefferson Lab. The geometry specific to the double spoke cavity requires a variety of tooling and fixtures. Also a number of joints are expected to make it difficult to maintain the geometric deviation from the design minimal. This paper will report the fabrication technique, resulting tolerance from the design, and comparison between the measurements and simulations

    Development and Testing Of A 325 MHz β0= 0.82 Single-Spoke Cavity

    Get PDF
    A single-spoke cavity operating at 325 MHz with geometric beta of 0.82 has been developed and tested. Initial results* showed high levels of field emission which limited the achievable gradient. Several rounds of helium processing significantly improved the cavity performance. Here we discuss the development process and report on the improved results

    Process feasibility study in support of silicon material task 1

    Get PDF
    Results for process system properties, chemical engineering and economic analyses of the new technologies and processes being developed for the production of lower cost silicon for solar cells are presented. Analyses of process system properties are important for chemical materials involved in the several processes under consideration for semiconductor and solar cell grade silicon production. Major physical, thermodynamic and transport property data are reported for silicon source and processing chemical materials

    Cryogenic Testing of High-Velocity Spoke Cavities

    Get PDF
    Spoke-loaded cavities are being investigated for the high-velocity regime. The relative compactness at low-frequency makes them attractive for applications requiring, or benefiting from, 4 K operation. Additionally, the large velocity acceptance makes them good candidates for the acceleration of high-velocity protons and ions. Here we present the results of cryogenic testing of a 325 MHz, β0 = 0.82 single-spoke cavity and a 500 MHz, β0 = 1 double-spoke cavity
    • …
    corecore