14,048 research outputs found

    Advanced collapsible tank for liquid containment

    Get PDF
    Tanks for bulk liquid containment will be required to support advanced planetary exploration programs. Potential applications include storage of potable, process, and waste water, and fuels and process chemicals. The launch mass and volume penalties inherent in rigid tanks suggest that collapsible tanks may be more efficient. Collapsible tanks are made of lightweight flexible material and can be folded compactly for storage and transport. Although collapsible tanks for terrestrial use are widely available, a new design was developed that has significantly less mass and bulk than existing models. Modelled after the shape of a sessible drop, this design features a dual membrane with a nearly uniform stress distribution and a low surface-to-volume ratio. It can be adapted to store a variety of liquids in nearly any environment with constant acceleration field. Three models of 10L, 50L, and 378L capacity have been constructed and tested. The 378L (100 gallon) model weighed less than 10 percent of a commercially available collapsible tank of equivalent capacity, and required less than 20 percent of the storage space when folded for transport

    Advanced underwater lift device

    Get PDF
    Flexible underwater lift devices ('lift bags') are used in underwater operations to provide buoyancy to submerged objects. Commercially available designs are heavy, bulky, and awkward to handle, and thus are limited in size and useful lifting capacity. An underwater lift device having less than 20 percent of the bulk and less than 10 percent of the weight of commercially available models was developed. The design features a dual membrane envelope, a nearly homogeneous envelope membrane stress distribution, and a minimum surface-to-volume ratio. A proof-of-concept model of 50 kg capacity was built and tested. Originally designed to provide buoyancy to mock-ups submerged in NASA's weightlessness simulators, the device may have application to water-landed spacecraft which must deploy flotation upon impact, and where launch weight and volume penalties are significant. The device may also be useful for the automated recovery of ocean floor probes or in marine salvage applications

    Settlement of Highway Bridge Approaches

    Get PDF

    Tourists perceptions of climate change in Cairns, Australia

    Get PDF
    This paper will briefly review the impacts of climate change on the Wet Tropics and the Great Barrier Reef, and then will discuss the results of an exploratory study into tourists perceptions of 1) the impact of climate change on the Wet Tropics and Great Barrier Reef and the tourism industry in Cairns, and 2) what tourists can do to mitigate these impacts. A survey was administered to 81 tourists in Cairns, Australia. The results suggest that tourists have a range of outlooks concerning the impact of climate change in Cairns and the role of tourists in mitigating these impacts

    Cosmic ray feedback in the FIRE simulations: constraining cosmic ray propagation with GeV gamma ray emission

    Get PDF
    We present the implementation and the first results of cosmic ray (CR) feedback in the Feedback In Realistic Environments (FIRE) simulations. We investigate CR feedback in non-cosmological simulations of dwarf, sub-L⋆L\star starburst, and L⋆L\star galaxies with different propagation models, including advection, isotropic and anisotropic diffusion, and streaming along field lines with different transport coefficients. We simulate CR diffusion and streaming simultaneously in galaxies with high resolution, using a two moment method. We forward-model and compare to observations of γ\gamma-ray emission from nearby and starburst galaxies. We reproduce the γ\gamma-ray observations of dwarf and L⋆L\star galaxies with constant isotropic diffusion coefficient κ∼3×1029 cm2 s−1\kappa \sim 3\times 10^{29}\,{\rm cm^{2}\,s^{-1}}. Advection-only and streaming-only models produce order-of-magnitude too large γ\gamma-ray luminosities in dwarf and L⋆L\star galaxies. We show that in models that match the γ\gamma-ray observations, most CRs escape low-gas-density galaxies (e.g.\ dwarfs) before significant collisional losses, while starburst galaxies are CR proton calorimeters. While adiabatic losses can be significant, they occur only after CRs escape galaxies, so they are only of secondary importance for γ\gamma-ray emissivities. Models where CRs are ``trapped'' in the star-forming disk have lower star formation efficiency, but these models are ruled out by γ\gamma-ray observations. For models with constant κ\kappa that match the γ\gamma-ray observations, CRs form extended halos with scale heights of several kpc to several tens of kpc.Comment: 31 pages, 26 figures, accepted for publication in MNRA

    Submillimetre galaxies in a hierarchical universe: number counts, redshift distribution and implications for the IMF

    Get PDF
    High-redshift submillimetre galaxies (SMGs) are some of the most rapidly star-forming galaxies in the Universe. Historically, galaxy formation models have had difficulty explaining the observed number counts of SMGs. We combine a semi-empirical model with 3D hydrodynamical simulations and 3D dust radiative transfer to predict the number counts of unlensed SMGs. Because the stellar mass functions, gas and dust masses, and sizes of our galaxies are constrained to match observations, we can isolate uncertainties related to the dynamical evolution of galaxy mergers and the dust radiative transfer. The number counts and redshift distributions predicted by our model agree well with observations. Isolated disc galaxies dominate the faint (S_(1.1) ≲ 1 or S_(850) ≲ 2 mJy) population. The brighter sources are a mix of merger-induced starbursts and galaxy-pair SMGs; the latter subpopulation accounts for ∼30–50 per cent of all SMGs at all S_(1.1) ≳ 0.5 mJy (S_(850) ≳ 1 mJy). The mean redshifts are ∼3.0–3.5, depending on the flux cut, and the brightest sources tend to be at higher redshifts. Because the galaxy-pair SMGs will be resolved into multiple fainter sources by the Atacama Large Millimeter/submillimeter Array (ALMA), the bright ALMA counts should be as much as two times less than those observed using single-dish telescopes. The agreement between our model, which uses a Kroupa initial mass function (IMF), and observations suggests that the IMF in high-redshift starbursts need not be top heavy; if the IMF were top heavy, our model would overpredict the number counts. We conclude that the difficulty some models have reproducing the observed SMG counts is likely indicative of more general problems – such as an underprediction of the abundance of massive galaxies or a star formation rate and stellar mass relation normalization lower than that observed – rather than a problem specific to the SMG population
    • …
    corecore