13,737 research outputs found

    Letter from H. L. Hopkins

    Get PDF
    Letter concerning a copy of the catalogue for Utah Agricultural College

    Densest local packing diversity. II. Application to three dimensions

    Full text link
    The densest local packings of N three-dimensional identical nonoverlapping spheres within a radius Rmin(N) of a fixed central sphere of the same size are obtained for selected values of N up to N = 1054. In the predecessor to this paper [A.B. Hopkins, F.H. Stillinger and S. Torquato, Phys. Rev. E 81 041305 (2010)], we described our method for finding the putative densest packings of N spheres in d-dimensional Euclidean space Rd and presented those packings in R2 for values of N up to N = 348. We analyze the properties and characteristics of the densest local packings in R3 and employ knowledge of the Rmin(N), using methods applicable in any d, to construct both a realizability condition for pair correlation functions of sphere packings and an upper bound on the maximal density of infinite sphere packings. In R3, we find wide variability in the densest local packings, including a multitude of packing symmetries such as perfect tetrahedral and imperfect icosahedral symmetry. We compare the densest local packings of N spheres near a central sphere to minimal-energy configurations of N+1 points interacting with short-range repulsive and long-range attractive pair potentials, e.g., 12-6 Lennard-Jones, and find that they are in general completely different, a result that has possible implications for nucleation theory. We also compare the densest local packings to finite subsets of stacking variants of the densest infinite packings in R3 (the Barlow packings) and find that the densest local packings are almost always most similar, as measured by a similarity metric, to the subsets of Barlow packings with the smallest number of coordination shells measured about a single central sphere, e.g., a subset of the FCC Barlow packing. We additionally observe that the densest local packings are dominated by the spheres arranged with centers at precisely distance Rmin(N) from the fixed sphere's center.Comment: 45 pages, 18 figures, 2 table

    General Rotorcraft Aeromechanical Stability Program (GRASP): Theory manual

    Get PDF
    The general rotorcraft aeromechanical stability program (GRASP) was developed to calculate aeroelastic stability for rotorcraft in hovering flight, vertical flight, and ground contact conditions. GRASP is described in terms of its capabilities and its philosophy of modeling. The equations of motion that govern the physical system are described, as well as the analytical approximations used to derive them. The equations include the kinematical equation, the element equations, and the constraint equations. In addition, the solution procedures used by GRASP are described. GRASP is capable of treating the nonlinear static and linearized dynamic behavior of structures represented by arbitrary collections of rigid-body and beam elements. These elements may be connected in an arbitrary fashion, and are permitted to have large relative motions. The main limitation of this analysis is that periodic coefficient effects are not treated, restricting rotorcraft flight conditions to hover, axial flight, and ground contact. Instead of following the methods employed in other rotorcraft programs. GRASP is designed to be a hybrid of the finite-element method and the multibody methods used in spacecraft analysis. GRASP differs from traditional finite-element programs by allowing multiple levels of substructure in which the substructures can move and/or rotate relative to others with no small-angle approximations. This capability facilitates the modeling of rotorcraft structures, including the rotating/nonrotating interface and the details of the blade/root kinematics for various types. GRASP differs from traditional multibody programs by considering aeroelastic effects, including inflow dynamics (simple unsteady aerodynamics) and nonlinear aerodynamic coefficients

    Metal matrix composite analyzer (METCAN) user's manual, version 4.0

    Get PDF
    The Metal Matrix Composite Analyzer (METCAN) is a computer code developed at Lewis Research Center to simulate the high temperature nonlinear behavior of metal matrix composites. An updated version of the METCAN User's Manual is presented. The manual provides the user with a step by step outline of the procedure necessary to run METCAN. The preparation of the input file is demonstrated, and the output files are explained. The sample problems are presented to highlight various features of METCAN. An overview of the geometric conventions, micromechanical unit cell, and the nonlinear constitutive relationships is also provided

    Microprogram scheme for automatic recovery from computer error

    Get PDF
    Microprogram scheme enables computer to recover from failure in one of its two central processing units during time duration of instruction in which failure occurs. Microprogram advantages include - /1/ built-in interpretive capability, /2/ selection of processing interrupts by priority, and /3/ economical use of bootstrap sequence

    A fault-tolerant multiprocessor architecture for aircraft, volume 1

    Get PDF
    A fault-tolerant multiprocessor architecture is reported. This architecture, together with a comprehensive information system architecture, has important potential for future aircraft applications. A preliminary definition and assessment of a suitable multiprocessor architecture for such applications is developed

    Costs and utilization of corn in seven Iowa counties

    Get PDF
    The demand for information on the cost of producing an acre or a bushel of corn has increased greatly during the past few years. This is especially true in Iowa, where corn is the basic crop. Inquiring individuals are often disappointed when they learn that corn cost data are not available in simple terms of dollars and cents. This is so because they fail to realize the difficulties encountered in attempting to evaluate (measure the quantity as well as the quality of) some of the more important elements of cost. They also overlook the fact that the cost of producing corn depends largely on local soil, climatic and economic conditions and that these factors vary from one section of the state to another

    System data communication structures for active-control transport aircraft, volume 2

    Get PDF
    The application of communication structures to advanced transport aircraft are addressed. First, a set of avionic functional requirements is established, and a baseline set of avionics equipment is defined that will meet the requirements. Three alternative configurations for this equipment are then identified that represent the evolution toward more dispersed systems. Candidate communication structures are proposed for each system configuration, and these are compared using trade off analyses; these analyses emphasize reliability but also address complexity. Multiplex buses are recognized as the likely near term choice with mesh networks being desirable for advanced, highly dispersed systems

    System data communication structures for active-control transport aircraft, volume 1

    Get PDF
    Candidate data communication techniques are identified, including dedicated links, local buses, broadcast buses, multiplex buses, and mesh networks. The design methodology for mesh networks is then discussed, including network topology and node architecture. Several concepts of power distribution are reviewed, including current limiting and mesh networks for power. The technology issues of packaging, transmission media, and lightning are addressed, and, finally, the analysis tools developed to aid in the communication design process are described. There are special tools to analyze the reliability and connectivity of networks and more general reliability analysis tools for all types of systems

    Galaxy disks do not need to survive in the L-CDM paradigm: the galaxy merger rate out to z~1.5 from morpho-kinematic data

    Full text link
    About two-thirds of present-day, large galaxies are spirals such as the Milky Way or Andromeda, but the way their thin rotating disks formed remains uncertain. Observations have revealed that half of their progenitors, six billion years ago, had peculiar morphologies and/or kinematics, which exclude them from the Hubble sequence. Major mergers, i.e., fusions between galaxies of similar mass, are found to be the likeliest driver for such strong peculiarities. However, thin disks are fragile and easily destroyed by such violent collisions, which creates a critical tension between the observed fraction of thin disks and their survival within the L-CDM paradigm. Here we show that the observed high occurrence of mergers amongst their progenitors is only apparent and is resolved when using morpho-kinematic observations which are sensitive to all the phases of the merging process. This provides an original way of narrowing down observational estimates of the galaxy merger rate and leads to a perfect match with predictions by state-of-the-art L-CDM semi-empirical models with no particular fine-tuning needed. These results imply that half of local thin disks do not survive but are actually rebuilt after a gas-rich major merger occurring in the past nine billion years, i.e., two-thirds of the lifetime of the Universe. This emphasizes the need to study how thin disks can form in halos with a more active merger history than previously considered, and to investigate what is the origin of the gas reservoir from which local disks would reform.Comment: 19 pages, 7 figures, 2 tables. Accepted in ApJ. V2 to match proof corrections and added reference
    • …
    corecore