16,689 research outputs found

    Supermassive Black Holes: Connecting the Growth to the Cosmic Star Formation Rate

    Full text link
    In this Letter, we present a model connecting the cosmic star formation rate (CSFR) to the growth of supermassive black holes. Considering that the evolution of the massive black hole is dominated by accretion (Soltan's argument) and that the accretion process can be described by a probabilistic function directly regulated by the CSFR, we obtain the evolution of the black hole mass density. Then using the quasar luminosity function, we determine both the functional form of the radiative efficiency and the evolution of the quasar duty-cycle as functions of the redshift. We analyze four different CSFRs showing that the quasar duty-cycle, δ(z)\delta(z), peaks at z8.511z\sim 8.5-11 and so within the window associated with the reionization of the Universe. In particular, δmax0.090.22\delta_{\rm max}\sim 0.09-0.22 depending on the CSFR. The mean radiative efficiency, ηˉ(z)\bar\eta(z), peaks at z0.11.3z\sim 0.1-1.3 with ηˉmax0.100.46\bar\eta_{\rm max}\sim 0.10-0.46 depending on the specific CSFR used. Our results also show that is not necessary a supercritical Eddington accretComment: accepted for publication in MNRAS Letters (5 pages, 6 figures), Some typos fixed; MNRAS Letters 17 Aug 201

    The star formation history of damped Lyman alpha absorbers

    Full text link
    The local power law relationship between the surface densities of neutral hydrogen gas and star formation rate (SFR) can be used to explore the SFR properties of damped Lyman alpha (DLA) systems at higher redshift. We find that while the SFR densities for DLA systems are consistent with luminous star forming galaxies at redshifts below z~0.6, at higher redshifts their SFR density is too low for them to provide a significant contribution to the cosmic star formation history (SFH). This suggests that the majority of DLAs may be a distinct population from the Lyman break galaxies (LBGs) or submillimeter star-forming galaxies that together dominate the SFR density at high redshift. It is also possible that the DLAs do not trace the bulk of the neutral gas at high redshift. The metallicity properties of DLAs are consistent with this interpretation. The DLAs show a metal mass density lower by two orders of magnitude at all redshifts than that inferred from the SFH of the universe. These results are consistent with DLAs being dominated by low mass systems having low SFRs or a late onset of star formation, similar to the star formation histories of dwarf galaxies in the local universe.Comment: 9 pages, 5 figures, accepted for publication in Ap

    Optimal design of composite hip implants using NASA technology

    Get PDF
    Using an adaptation of NASA software, we have investigated the use of numerical optimization techniques for the shape and material optimization of fiber composite hip implants. The original NASA inhouse codes, were originally developed for the optimization of aerospace structures. The adapted code, which was called OPORIM, couples numerical optimization algorithms with finite element analysis and composite laminate theory to perform design optimization using both shape and material design variables. The external and internal geometry of the implant and the surrounding bone is described with quintic spline curves. This geometric representation is then used to create an equivalent 2-D finite element model of the structure. Using laminate theory and the 3-D geometric information, equivalent stiffnesses are generated for each element of the 2-D finite element model, so that the 3-D stiffness of the structure can be approximated. The geometric information to construct the model of the femur was obtained from a CT scan. A variety of test cases were examined, incorporating several implant constructions and design variable sets. Typically the code was able to produce optimized shape and/or material parameters which substantially reduced stress concentrations in the bone adjacent of the implant. The results indicate that this technology can provide meaningful insight into the design of fiber composite hip implants

    Calibration of the Ames Anechoic Facility. Phase 1: Short range plan

    Get PDF
    A calibration was made of the acoustic and aerodynamic characteristics of a small, open-jet wind tunnel in an anechoic room. The jet nozzle was 102 mm diameter and was operated subsonically. The anechoic-room dimensions were 7.6 m by 5.5 m by 3.4 m high (wedge tip to wedge tip). Noise contours in the chamber were determined by various jet speeds and exhaust collector positions. The optimum nozzle/collector separation from an acoustic standpoint was 2.1 m. Jet velocity profiles and turbulence levels were measured using pressure probes and hot wires. The jet was found to be symmetric, with no unusual characteristics. The turbulence measurements were hampered by oil mist contamination of the airflow

    A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies: II. Formation of Red Ellipticals

    Full text link
    (Abridged) We develop and test a model for the cosmological role of mergers in the formation and quenching of red, early-type galaxies. Making the ansatz that star formation is quenched after a gas-rich, spheroid-forming major merger, we demonstrate that this naturally predicts the turnover in the efficiency of star formation at ~L_star, as well as the observed mass functions/density of red galaxies as a function of redshift, the formation times of spheroids as a function of mass, and the fraction of quenched galaxies as a function of galaxy and halo mass, environment, and redshift. Comparing to a variety of semi-analytic models in which quenching is primarily driven by halo mass considerations or secular/disk instabilities, we demonstrate that our model and different broad classes of models make unique and robust qualitative predictions for a number of observables, including the red fraction as a function of galaxy and halo mass, the density of passive galaxies and evolution of the color-morphology-density relations at high z, and the fraction of disky/boxy spheroids as a function of mass. In each case, the observations favor a model in which galaxies quench after a major merger builds a massive spheroid, and disfavor quenching via secular or pure halo processes. We discuss a variety of physical possibilities for this quenching, and propose a mixed scenario in which traditional quenching in hot, massive halos is supplemented by the feedback associated with star formation and quasar activity in a major merger, which temporarily suppress cooling and establish the conditions of a dynamically hot halo in the central regions of the host, even in low mass halos.Comment: 29 pages, 21 figures, submitted to ApJ. Replacement fixes comparison of models in Figures 6 &

    The mass-metallicity relation of local active galaxies

    Full text link
    We systematically measure the gas-phase metallicities and the mass-metallicity relation of a large sample of local active galaxies for the first time. Observed emission-line fluxes from the Sloan Digital Sky Survey (SDSS) are compared to a four-dimensional grid of photoionization models using the Bayesian parameter estimation code NebulaBayes. For the first time we take into account arbitrary mixing between HII region and narrow-line region (NLR) emission, and the models are also varied with metallicity, ionization parameter in the NLR, and the gas pressure. The active galactic nucleus (AGN) oxygen abundance is found to increase by ΔO/H0.1\Delta {\rm O/H} \sim 0.1 dex as a function of host galaxy stellar mass over the range 10.1<logM/M<11.310.1 < \log M_* / M_\odot < 11.3. We also measure the metallicity and ionization parameter of 231000 star-forming galaxies for comparison with the sample of 7670 Seyfert 2 galaxies. A systematic offset in oxygen abundance of 0.09 dex is observed between the mass-metallicity relations of the star-forming and active galaxies. We investigate potential causes of the offset, including sample selection and the treatment in the models of diffuse ionized gas, pressure, and ionization parameter. We cannot identify the major cause(s), but suspect contributions due to deficiencies in modeling the ionizing spectra and the treatment of dust physics. Optical diagnostic diagrams are presented with the star-forming and Seyfert data colored by the inferred oxygen abundance, ionization parameter and gas pressure, clearly illustrating the trends in these quantities.Comment: 12 pages, 4 figures and 1 table; accepted for publication in Ap
    corecore