11,226 research outputs found

    Validation of scramjet exhaust simulation technique at Mach 6

    Get PDF
    Current design philosophy for hydrogen-fueled, scramjet-powered hypersonic aircraft results in configurations with strong couplings between the engine plume and vehicle aerodynamics. The experimental verification of the scramjet exhaust simulation is described. The scramjet exhaust was reproduced for the Mach 6 flight condition by the detonation tube simulator. The exhaust flow pressure profiles, and to a large extent the heat transfer rate profiles, were then duplicated by cool gas mixtures of Argon and Freon 13B1 or Freon 12. The results of these experiments indicate that a cool gas simulation of the hot scramjet exhaust is a viable simulation technique except for phenomena which are dependent on the wall temperature relative to flow temperature

    Validation of scramjet exhaust simulation technique

    Get PDF
    Scramjet/airframe integration design philosophy for hypersonic aircraft results in configurations having lower aft surfaces that serve as exhaust nozzles. There is a strong coupling between the exhaust plume and the aerodynamics of the vehicle, making accurate simulation of the engine exhaust mandatory. The experimental verification of the simulation procedure is described. The detonation tube simulator was used to produce an exact simulation of the scramjet exhaust for a Mach 8 flight condition. The pressure distributions produced by the exact exhaust flow were then duplicated by a cool mixture Argon and Freon 13B1. Such a substitute gas mixture validated by the detonation tube technique could be used in conventional wind tunnel tests. The results presented show the substitute gas simulation technique to be valid for shockless expansions

    Recent developments in classical density functional theory: Internal energy functional and diagrammatic structure of fundamental measure theory

    Full text link
    An overview of several recent developments in density functional theory for classical inhomogeneous liquids is given. We show how Levy's constrained search method can be used to derive the variational principle that underlies density functional theory. An advantage of the method is that the Helmholtz free energy as a functional of a trial one-body density is given as an explicit expression, without reference to an external potential as is the case in the standard Mermin-Evans proof by reductio ad absurdum. We show how to generalize the approach in order to express the internal energy as a functional of the one-body density distribution and of the local entropy distribution. Here the local chemical potential and the bulk temperature play the role of Lagrange multipliers in the Euler-Lagrange equations for minimiziation of the functional. As an explicit approximation for the free-energy functional for hard sphere mixtures, the diagrammatic structure of Rosenfeld's fundamental measure density unctional is laid out. Recent extensions, based on the Kierlik-Rosinberg scalar weight functions, to binary and ternary non-additive hard sphere mixtures are described.Comment: 15 pages, 6 figure

    COMPARISON OF JUMP HEIGHT VALUES DERIVED FROM A FORCE PLATFORM AND VERTEC

    Get PDF
    This study simultaneously assessed jump heights derived from a force platform and a Vertec as well as the reliability of each instrument. Twenty-one recreationally active adults performed 3 maximal countermovement jumps reaching to a Vertec that was placed above the force platform. A repeated measures ANOVA was used to assess differences between Vertec jump height and force platform derived jump height. Results revealed a 27% higher jump height when assessed by the Vertec, compared to the force platform. Intra-class correlations were used to assess trial-to-trial reliability. Both instruments displayed excellent reliability. Practitioners could use the following regression equation to interpret measurements from the force platform: Vertec jump height = force platform height (1.024) + 0.142m

    The van Hove distribution function for Brownian hard spheres: dynamical test particle theory and computer simulations for bulk dynamics

    Get PDF
    We describe a test particle approach based on dynamical density functional theory (DDFT) for studying the correlated time evolution of the particles that constitute a fluid. Our theory provides a means of calculating the van Hove distribution function by treating its self and distinct parts as the two components of a binary fluid mixture, with the `self' component having only one particle, the `distinct' component consisting of all the other particles, and using DDFT to calculate the time evolution of the density profiles for the two components. We apply this approach to a bulk fluid of Brownian hard spheres and compare to results for the van Hove function and the intermediate scattering function from Brownian dynamics computer simulations. We find good agreement at low and intermediate densities using the very simple Ramakrishnan-Yussouff [Phys. Rev. B 19, 2775 (1979)] approximation for the excess free energy functional. Since the DDFT is based on the equilibrium Helmholtz free energy functional, we can probe a free energy landscape that underlies the dynamics. Within the mean-field approximation we find that as the particle density increases, this landscape develops a minimum, while an exact treatment of a model confined situation shows that for an ergodic fluid this landscape should be monotonic. We discuss possible implications for slow, glassy and arrested dynamics at high densities.Comment: Submitted to Journal of Chemical Physic
    corecore