7 research outputs found

    Repression of transcription at DNA breaks requires cohesin throughout interphase and prevents genome instability

    Get PDF
    Cohesin subunits are frequently mutated in cancer, but how they function as tumor suppressors is unknown. Cohesin mediates sister chromatid cohesion, but this is not always perturbed in cancer cells. Here, we identify a previously unknown role for cohesin. We find that cohesin is required to repress transcription at DNA double-strand breaks (DSBs). Notably, cohesin represses transcription at DSBs throughout interphase, indicating that this is distinct from its known role in mediating DNA repair through sister chromatid cohesion. We identified a cancer-associated SA2 mutation that supports sister chromatid cohesion but is unable to repress transcription at DSBs. We further show that failure to repress transcription at DSBs leads to large-scale genome rearrangements. Cancer samples lacking SA2 display mutational patterns consistent with loss of this pathway. These findings uncover a new function for cohesin that provides insights into its frequent loss in cancer

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Distinct response of adult neural stem cells to low versus high dose ionising radiation.

    Get PDF
    Radiosusceptibility is the sensitivity of a biological organism to ionising radiation (IR)-induced carcinogenesis, an outcome of IR exposure relevant following low doses. The tissue response is strongly influenced by the DNA damage response (DDR) activated in stem and progenitor cells. We previously reported that in vivo exposure to 2 Gy X-rays activates apoptosis, proliferation arrest and premature differentiation in neural progenitor cells (transit amplifying cells and neuroblasts) but not in neural stem cells (NSCs) of the largest neurogenic region of the adult brain, the subventricular zone (SVZ). These responses promote adult quiescent NSC (qNSC) activation after 2 Gy. In contrast, neonatal (P5) SVZ neural progenitors continue proliferating and do not activate qNSCs. Significantly, the human and mouse neonatal brain is radiosusceptible. Here, we examine the response of stem and progenitor cells in the SVZ to low IR doses (50–500 mGy). We observe a linear dose-response for apoptosis but, in contrast, proliferation arrest and neuroblast differentiation require a threshold dose of 200 or 500 mGy, respectively. Importantly, qNSCs were not activated at doses below 500 mGy. Thus, full DDR activation in the neural stem cell compartment in vivo necessitates a threshold dose, which can be considered of significance when evaluating IR-induced cancer risk and dose extrapolation

    La déficience de PBRM1 confÚre une létalité synthétique aux inhibiteurs de la réparation de l'ADN dans le cancer

    No full text
    International audienceInactivation of Polybromo 1 (PBRM1), a specific subunit of the PBAF chromatin remodeling complex, occurs frequently in cancer, including 40% of clear cell renal cell carcinomas (ccRCC). To identify novel therapeutic approaches to targeting PBRM1-defective cancers, we used a series of orthogonal functional genomic screens that identified PARP and ATR inhibitors as being synthetic lethal with PBRM1 deficiency. The PBRM1/PARP inhibitor synthetic lethality was recapitulated using several clinical PARP inhibitors in a series of in vitro model systems and in vivo in a xenograft model of ccRCC. In the absence of exogenous DNA damage, PBRM1-defective cells exhibited elevated levels of replication stress, micronuclei, and R-loops. PARP inhibitor exposure exacerbated these phenotypes. Quantitative mass spectrometry revealed that multiple R-loop processing factors were downregulated in PBRM1-defective tumor cells. Exogenous expression of the R-loop resolution enzyme RNase H1 reversed the sensitivity of PBRM1-deficient cells to PARP inhibitors, suggesting that excessive levels of R-loops could be a cause of this synthetic lethality. PARP and ATR inhibitors also induced cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) innate immune signaling in PBRM1-defective tumor cells. Overall, these findings provide the preclinical basis for using PARP inhibitors in PBRM1-defective cancers. SIGNIFICANCE: This study demonstrates that PARP and ATR inhibitors are synthetic lethal with the loss of PBRM1, a PBAF-specific subunit, thus providing the rationale for assessing these inhibitors in patients with PBRM1-defective cancer.L'inactivation de Polybromo 1 (PBRM1), une sous-unitĂ© spĂ©cifique du complexe de remodelage de la chromatine PBAF, se produit frĂ©quemment dans le cancer, y compris dans 40% des carcinomes rĂ©naux Ă  cellules claires (ccRCC). Afin d'identifier de nouvelles approches thĂ©rapeutiques pour cibler les cancers dĂ©ficients en PBRM1, nous avons utilisĂ© une sĂ©rie de cribles gĂ©nomiques fonctionnels orthogonaux qui ont identifiĂ© les inhibiteurs PARP et ATR comme Ă©tant synthĂ©tiquement lĂ©taux en cas de dĂ©ficience en PBRM1. La lĂ©talitĂ© synthĂ©tique des inhibiteurs de PBRM1/PARP a Ă©tĂ© rĂ©capitulĂ©e en utilisant plusieurs inhibiteurs cliniques de PARP dans une sĂ©rie de systĂšmes modĂšles in vitro et in vivo dans un modĂšle de xĂ©nogreffe de ccRCC. En l'absence de lĂ©sions exogĂšnes de l'ADN, les cellules dĂ©ficientes en PBRM1 prĂ©sentaient des niveaux Ă©levĂ©s de stress de rĂ©plication, de micronoyaux et de boucles R. L'exposition Ă  un inhibiteur de PARP a exacerbĂ© la lĂ©talitĂ© synthĂ©tique. L'exposition Ă  un inhibiteur de PARP a exacerbĂ© ces phĂ©notypes. La spectromĂ©trie de masse quantitative a rĂ©vĂ©lĂ© que plusieurs facteurs de traitement des boucles R Ă©taient rĂ©gulĂ©s Ă  la baisse dans les cellules tumorales dĂ©fectueuses de PBRM1. L'expression exogĂšne de l'enzyme de rĂ©solution des boucles R, la RNase H1, a inversĂ© la sensibilitĂ© des cellules PBRM1 dĂ©ficientes aux inhibiteurs de la PARP, ce qui suggĂšre que des niveaux excessifs de boucles R pourraient ĂȘtre une cause de cette lĂ©talitĂ© synthĂ©tique. Les inhibiteurs de PARP et d'ATR ont Ă©galement induit une signalisation immunitaire innĂ©e de type GMP cyclique-AMP synthase/stimulateur des gĂšnes de l'interfĂ©ron (cGAS/STING) dans les cellules tumorales dĂ©ficientes en PBRM1. Dans l'ensemble, ces rĂ©sultats fournissent une base prĂ©clinique pour l'utilisation des inhibiteurs de PARP dans les cancers dĂ©ficients en PBRM1. SIGNIFICATION : Cette Ă©tude dĂ©montre que les inhibiteurs de PARP et d'ATR sont synthĂ©tiquement lĂ©taux en cas de perte de PBRM1, une sous-unitĂ© spĂ©cifique du PBAF, ce qui justifie l'Ă©valuation de ces inhibiteurs chez les patients atteints d'un cancer dĂ©ficient en PBRM1

    The Americans with Disabilities Act and the Constitution of the United States (Dissertation)

    No full text
    corecore