30 research outputs found

    Intensity fluctuations in bimodal micropillar lasers enhanced by quantum-dot gain competition

    Full text link
    We investigate correlations between orthogonally polarized cavity modes of a bimodal micropillar laser with a single layer of self-assembled quantum dots in the active region. While one emission mode of the microlaser demonstrates a characteristic s-shaped input-output curve, the output intensity of the second mode saturates and even decreases with increasing injection current above threshold. Measuring the photon auto-correlation function g^{(2)}(\tau) of the light emission confirms the onset of lasing in the first mode with g^{(2)}(0) approaching unity above threshold. In contrast, strong photon bunching associated with super-thermal values of g^{(2)}(0) is detected for the other mode for currents above threshold. This behavior is attributed to gain competition of the two modes induced by the common gain material, which is confirmed by photon crosscorrelation measurements revealing a clear anti-correlation between emission events of the two modes. The experimental studies are in excellent qualitative agreement with theoretical studies based on a microscopic semiconductor theory, which we extend to the case of two modes interacting with the common gain medium. Moreover, we treat the problem by an extended birth-death model for two interacting modes, which reveals, that the photon probability distribution of each mode has a double peak structure, indicating switching behavior of the modes for the pump rates around threshold.Comment: 11 pages, 5 figures, submitted to Phys. Rev.

    Generating single photons at gigahertz modulation-speed using electrically controlled quantum dot microlenses

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 108, 021104 (2016) and may be found at https://doi.org/10.1063/1.4939658.We report on the generation of single-photon pulse trains at a repetition rate of up to 1 GHz. We achieve this speed by modulating the external voltage applied on an electrically contacted quantum dot microlens, which is optically excited by a continuous-wave laser. By modulating the photoluminescence of the quantum dot microlens using a square-wave voltage, single-photon emission is triggered with a response time as short as (281 ± 19) ps, being 6 times faster than the radiative lifetime of (1.75 ± 0.02) ns. This large reduction in the characteristic emission time is enabled by a rapid capacitive gating of emission from the quantum dot, which is placed in the intrinsic region of a p-i-n-junction biased below the onset of electroluminescence. Here, since our circuit acts as a rectifying differentiator, the rising edge of the applied voltage pulses triggers the emission of single photons from the optically excited quantum dot. The non-classical nature of the photon pulse train generated at GHz-speed is proven by intensity autocorrelation measurements with g(2)(0) = 0.3 ± 0.1. Our results combine optical excitation with fast electrical gating and thus show promise for the generation of indistinguishable single photons at rates exceeding the limitations set by the intrinsic radiative lifetime.BMBF, 03V0630, Entwicklung einer Halbleiterbasierten Einzelphotonenquelle fĂŒr die Quanteninformationstechnologie (QSOURCE)DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, Bauelement

    Compensation of phonon-induced renormalization of vacuum Rabi splitting in large quantum dots : towards temperature-stable strong coupling in the solid state with quantum dot-micropillars

    Get PDF
    The authors acknowledge financial support from Deutsche Forschungsgemeinschaft (DFG) via projects AX17/7-1 and RE2974/5-1.We study experimentally the influence of temperature on the emission characteristics of quantum dot-micropillars in the strong coupling regime of cavity quantum electrodynamics (cQED). In particular, we investigate its impact on the vacuum Rabi splitting (VRS) and we address the important question of the temperature stability of the coherent coupling regime in a semiconductor system, which is relevant in view of both fundamental study and future applications. To study the temperature dependence we investigate an unprecedentedly large number of strong coupling cases (89) in a wide temperature range from 10 up to 50 K, which constitutes a good basis for statistical analysis. The experiment indicates a statistically significant increase of the VRS with temperature in contrast to an expected decrease of the VRS due to the dephasing induced by acoustic phonons. From the theoretical point of view, the phonon-induced renormalization of the VRS is calculated using a real-time path-integral approach for strongly confined quantum dots (QDs), which allows for a numerical exact treatment of the coupling between the QD and a continuum of longitudinal acoustic phonons. The absence of the expected decrease of the VRS with temperature in our experimental data can be attributed to a unique optical property of laterally extended In0.4Ga0.6As QDs used in this study. Their electronic structure facilitates an effective temperature-driven increase of the oscillator strength of the excitonic state by up to 40% in the given temperature range. This leads to enhanced light-matter interaction and overcompensates the phonon-related decrease of the VRS. The observed persistence of strong coupling in the presence of phonon-induced decoherence demonstrates the appealing possibility to counteract detrimental phonon effects in the cQED regime via engineering the electronic structure of QDs.Publisher PDFPeer reviewe

    Pump-power-driven mode switching in a microcavity device and its relation to Bose-Einstein condensation

    Get PDF
    TL, DV, and HAML contributed equally to this work. DV is grateful for support from the Studienstiftung des Deutschen Volkes. We acknowlege funding from the European Research Council under the European Union's Seventh Framework ERC Grant Agreeement No. 615613 and from the German Research Foundation (DFG) via Project No. Re2974/3-1 and the Research Unit FOR2414.We investigate the switching of the coherent emission mode of a bimodal microcavity device, occurring when the pump power is varied. We compare experimental data to theoretical results and identify the underlying mechanism based on the competition between the effective gain, on the one hand, and the intermode kinetics, on the other. When the pumping is ramped up, above a threshold, the mode with the largest effective gain starts to emit coherent light, corresponding to lasing. In contrast, in the limit of strong pumping, it is the intermode kinetics that determines which mode acquires a large occupation and shows coherent emission. We point out that this latter mechanism is akin to the equilibrium Bose-Einstein condensation of massive bosons. Thus, the mode switching in our microcavity device can be viewed as a minimal instance of Bose-Einstein condensation of photons. Moreover, we show that the switching from one cavity mode to the other always occurs via an intermediate phase where both modes are emitting coherent light and that it is associated with both superthermal intensity fluctuations and strong anticorrelations between both modes.Publisher PDFPeer reviewe

    Controlling the gain contribution of background emitters in few-quantum-dot microlasers

    Get PDF
    Funding: European Research Council under the European Union's Seventh Framework ERC Grant Agreement No. 615613; German Research Foundation via Grant-No.: Re2974/10-1, Gi1121/1-1.We provide experimental and theoretical insight into single-emitter lasing effects in a quantum dot (QD)-microlaser under controlled variation of background gain provided by off-resonant discrete gain centers. For that purpose, we apply an advanced two-color excitation concept where the background gain contribution of off-resonant QDs can be continuously tuned by precisely balancing the relative excitation power of two lasers emitting at different wavelengths. In this way, by selectively exciting a singleresonant QD and off-resonant QDs, we identify distinct single-QD signatures in the lasing characteristics and distinguish between gain contributions of a single resonant emitter and a countable number of offresonant background emitters to the optical output of the microlaser. Our work addresses the importantquestion whether single-QD lasing is feasible in experimentally accessible systems and shows that, for the investigated microlaser, the single-QD gain needs to be supported by the background gain contribution ofoff-resonant QDs to reach the transition to lasing. Interestingly, while a single QD cannot drive the investigated micropillar into lasing, its relative contribution to the emission can be as high as 70% and it dominates the statistics of emitted photons in the intermediate excitation regime below threshold.Publisher PDFPeer reviewe

    Unconventional collective normal-mode coupling in quantum-dot-based bimodal microlasers

    Get PDF
    We analyze the occurrence of normal-mode coupling (NMC) in bimodal lasers attributed to the collective interaction of the cavity field with a mesoscopic number of quantum dots (QDs). In contrast to the conventional NMC, here we observe locking of the frequencies and splitting of the linewidths of the system's eigenmodes in the coherent coupling regime. The theoretical analysis of the incoherent regime is supported by experimental observations where the emission spectrum of one of the orthogonally polarized modes of a bimodal QD micropillar laser demonstrates a distinct two-peak structure.Publisher PDFPeer reviewe

    Nonlinear emission characteristics of quantum dot-micropillar lasers in the presence of polarized optical feedback

    Get PDF
    We report on electrically pumped quantum dot-microlasers in the presence of polarized self-feedback. The high-beta microlasers show two orthogonal, linearly polarized emission modes which are coupled via the common gain medium. This coupling is explained in terms of gain competition between the two lasing modes and leads to distinct differences in their input-output characteristics. By applying polarized self-feedback via an external mirror, we are able to control the laser characteristics of the emission modes in terms of the output power, the coherence time and the photon statistics. We find that linearly polarized self-feedback stabilizes the lasing of a given mode, while cross-polarized feedback between the two modes reduces strongly the intensity of the other emission mode showing particular high-intensity fluctuations and even super-thermal values of the photon autocorrelation function g((2)) (tau) at zero delay. Measurements of g((2)) (tau) under external feedback also allow us to detect revival peaks associated with the round trip time of the external cavity. Analyzing the damping and shape of the g((2)) (tau) revival peaks by a phenomenological model provides us insight into the underlying physics such as the effective exciton lifetime and gain characteristics of the quantum dots in the active region of these microlasers.Publisher PDFPeer reviewe

    Correlations between axial and lateral emission of coupled quantum dot-micropillar cavities

    Get PDF
    The authors acknowledge financial support by the German Research Foundation via Projects No. Ka2318/4-1 and No. Re2974/3-1, the SFB 787 “Semiconductor Nanophotonics: Materials, Models, Devices,” and the State of Bavaria.We report on optical studies of coupled quantum dot–micropillar cavities using a 90∘ excitation-and-detection scheme. This specific configuration allows us to excite the micropillar structures either in the axial direction or in the lateral direction and to simultaneously detect emission from both directions. That enables us to reveal correlations between emission into the cavity mode and the leaky modes in the regime of cavity quantum electrodynamics. In particular, we can access and distinguish between axial cavity emission and lateral emission consisting of emission of quantum dots into the leaky modes and losses due to sidewall scattering, respectively. In the multiemitter regime, this technique provides direct access to the respective loss channels and reveals a strong increase of sidewall losses in the low-diameter regime below about 3.0 ÎŒm. Beyond that, in the single-emitter regime, we observe an anticorrelation between quantum dot emission coupled into the cavity mode and into the leaky modes which is controlled by light-matter interaction in the weak coupling regime. This anticorrelation is absent in the strong coupling regime due to the presence of entangled light-matter states. Moreover, excitation-power-dependent studies demonstrate that the intensity ratio between axial and lateral emission increases strongly above the lasing threshold due to enhanced directionality of emission into the lasing mode. In fact, theoretical studies confirm that this intensity ratio is an additional indicator of laser action in high-ÎČ microlasers for which the onset of lasing is difficult to identify by the input-output characteristics.Publisher PDFPeer reviewe
    corecore