9 research outputs found

    Stabilizing effects of group formation by Serengeti herbivores on predator-prey dynamics

    Get PDF
    Predator-prey theory often assumes that potential prey individuals are solitary and evenly distributed in space. This assumption is violated in social, mobile prey, such as many ungulates. Here we use data from 80 monthly field censuses to estimate the parameters for a power relationship between herd density and population density for eight species of large herbivores commonly found in the diet of Serengeti lions, confirming a power relationship proposed from a preliminary Serengeti dataset. Here we extend our analysis of that model to demonstrate how parameters of the power function relate to average herd size and density-dependent changes in herd size and evaluate how interspecific variation in these parameters shapes the group-dependent functional response by Serengeti lions for eight prey species. We apply the different prey-specific functional response models in a Rosenzweig-MacArthur framework to compare their impact on the stability of predator–prey dynamics. Model outcomes suggest that group formation plays a strong role in stabilizing lion–herbivore interactions in Serengeti by forcing lions to search over a larger area before each prey encounter. As a consequence of grouping by their prey, our model also suggests that Serengeti lions are forced to broaden their diets to include multiple species of prey in order to persist, potentially explaining the generalist foraging by lions routinely recorded across multiple ecosystems

    Stereoscopy in diagnostic radiology and procedure planning: does stereoscopic assessment of volume-rendered CT angiograms lead to more accurate characterisation of cerebral aneurysms compared with traditional monoscopic viewing?

    No full text
    Introduction Stereoscopic vision is a critical part of the human visual system, conveying more information than two-dimensional, monoscopic observation alone. This study aimed to quantify the contribution of stereoscopy in assessment of radiographic data, using widely available three-dimensional (3D)-capable display monitors by assessing whether stereoscopic viewing improved the characterisation of cerebral aneurysms. Methods Nine radiology registrars were shown 40 different volume-rendered (VR) models of cerebral computed tomography angiograms (CTAs), each in both monoscopic and stereoscopic format and then asked to record aneurysm characteristics on short multiple-choice answer sheets. The monitor used was a current model commercially available 3D television. Responses were marked against a gold standard of assessments made by a consultant radiologist, using the original CT planar images on a diagnostic radiology computer workstation. Results The participants' results were fairly homogenous, with most showing no difference in diagnosis using stereoscopic VR models. One participant performed better on the monoscopic VR models. On average, monoscopic VRs achieved a slightly better diagnosis by 2.0%. Conclusions Stereoscopy has a long history, but it has only recently become technically feasible for stored cross-sectional data to be adequately reformatted and displayed in this format. Scant literature exists to quantify the technology's possible contribution to medical imaging - this study attempts to build on this limited knowledge base and promote discussion within the field. Stereoscopic viewing of images should be further investigated and may well eventually find a permanent place in procedural and diagnostic medical imaging

    Bird community responses to changes in vegetation caused by increasing large mammal populations in the Serengeti woodlands

    No full text
    Context: The increase in density of large tree species, Vachellia robusta and V. tortilis, in the Serengeti Ecosystem of Tanzania has resulted in a decline of small tree species Senegalia senegal, V. hockii, Commiphora spp. This change has occurred since the late 1970s, a consequence of an increase in wildebeest following the extirpation of rinderpest, which reduced the dry grass fuel for fires, resulting in low fire frequencies. Change in tree species raises the question of whether there are indirect consequences for the avifauna that depend on the large trees for food and nesting. Aims: To determine how an increase in large mammals could influence diversity and distribution of avifauna communities in the Serengeti ecosystem woodlands. Methods: Data used to estimate changes in density of large and small trees were measured by Point Centre Quarter (PCQ). Bird species were recorded in 19 small-tree sites and 18 large-tree sites in the Serengeti National Park. Richness of bird guilds was calculated in the two habitat complexes (small and large trees), and the ‘rarefaction’ method was used to assess the difference in richness in habitats of the study area. Mean abundance for each species was calculated over the total number of sites for each habitat and compared using the Wilcoxon Rank Sum test to examine how the abundance of avifauna changes with each habitat type. Key results: There was an increase in the density of large trees in some areas in which they have replaced the original small trees. Such changes have resulted in greater richness of hole nesters and bark feeders, and a greater abundance of large-hole nesters and gleaner bird species. Conclusions: Because the increase in tree density was caused by an increase in large mammals, we conclude that this increasing mammal population is indirectly increasing richness and abundance of birds using the trees. Implications: Understanding the influence of large mammal populations on bird distributions has important conservation implications because the Serengeti ecosystem is classified as an important, endemic bird area
    corecore