5,594 research outputs found

    Harmonic oscillators in the Nos\'e - Hoover thermostat

    Full text link
    We study the dynamics of an ensemble of non-interacting harmonic oscillators in a nonlinear dissipative environment described by the Nos\'e - Hoover model. Using numerical simulation we find the histogram for total energy, which agrees with the analysis of the Nos\'e - Hoover equations effected with the method of averaging. The histogram does not correspond to Gibbs' canonical distribution. We have found oscillations at frequency proportional to α/m\sqrt{\alpha/m}, α\alpha the dissipative parameter of thermostat and mm the characteristic mass of particle, about the stationary state corresponding to equilibrium. The oscillations could have an important bearing upon the analysis of simulating molecular dynamics in the Nos\'e - Hoover thermostat.Comment: 7 pages, 4 figure

    Ground States for Exponential Random Graphs

    Full text link
    We propose a perturbative method to estimate the normalization constant in exponential random graph models as the weighting parameters approach infinity. As an application, we give evidence of discontinuity in natural parametrization along the critical directions of the edge-triangle model.Comment: 12 pages, 3 figures, 1 tabl

    Nonequilibrium stationary states with ratchet effect

    Full text link
    An ensemble of particles in thermal equilibrium at temperature TT, modeled by Nos\`e-Hoover dynamics, moves on a triangular lattice of oriented semi-disk elastic scatterers. Despite the scatterer asymmetry a directed transport is clearly ruled out by the second law of thermodynamics. Introduction of a polarized zero mean monochromatic field creates a directed stationary flow with nontrivial dependence on temperature and field parameters. We give a theoretical estimate of directed current induced by a microwave field in an antidot superlattice in semiconductor heterostructures.Comment: 4 pages, 5 figures (small changes added

    Evaluation of techniques for removal of spacecraft contaminants from activated carbon

    Get PDF
    Alternative techniques for the regeneration of carbon contaminated with various spacecraft contaminants were evaluated. Four different modes of regeneration were evaluated: (1) thermal desorption via vacuum, (2) thermal desorption via nitrogen purge, (3) in-situ catalytic oxidation of adsorbed contaminants, and (4) in-situ non-catalytic oxidation of adsorbed contaminants

    The Extended Range X-Ray Telescope center director's discretionary fund report

    Get PDF
    An Extended Range X-Ray Telescope (ERXRT) of high sensitivity and spatial resolution capable of functioning over a broad region of the X-ray/XUV portion of the spectrum has been designed and analyzed. This system has been configured around the glancing-incidence Wolter Type I X-ray mirror system which was flown on the Skylab Apollo Telescope Mount as ATM Experiment S-056. Enhanced sensitivity over a vastly broader spectral range can be realized by the utilization of a thinned, back-illuminated, buried-channel Charge Coupled Device (CCD) as the X-ray/XUV detector rather than photographic film. However, to maintain the high spatial resolution inherent in the X-ray optics when a CCD of 30 micron pixel size is used, it is necessary to increase the telescope plate scale. This can be accomplished by use of a glancing-incidence X-ray microscope to enlarge and re-focus the primary image onto the focal surface of the CCD

    Comment on the calculation of forces for multibody interatomic potentials

    Full text link
    The system of particles interacting via multibody interatomic potential of general form is considered. Possible variants of partition of the total force acting on a single particle into pair contributions are discussed. Two definitions for the force acting between a pair of particles are compared. The forces coincide only if the particles interact via pair or embedded-atom potentials. However in literature both definitions are used in order to determine Cauchy stress tensor. A simplest example of the linear pure shear of perfect square lattice is analyzed. It is shown that, Hardy's definition for the stress tensor gives different results depending on the radius of localization function. The differences strongly depend on the way of the force definition.Comment: 9 pages, 2 figure

    Plastic deformations in crystal, polycrystal, and glass in binary mixtures under shear: Collective yielding

    Full text link
    Using molecular dynamics simulation, we examine the dynamics of crystal, polycrystal, and glass in a Lennard-Jones binary mixture composed of small and large particles in two dimensions. The crossovers occur among these states as the composition c is varied at fixed size ratio. Shear is applied to a system of 9000 particles in contact with moving boundary layers composed of 1800 particles. The particle configurations are visualized with a sixfold orientation angle alpha_j(t) and a disorder variable D_j(t) defined for particle j, where the latter represents the deviation from hexagonal order. Fundamental plastic elements are classified into dislocation gliding and grain boundary sliding. At any c, large-scale yielding events occur on the acoustic time scale. Moreover, they multiply occur in narrow fragile areas, forming shear bands. The dynamics of plastic flow is highly hierarchical with a wide range of time scales for slow shearing. We also clarify the relationship between the shear stress averaged in the bulk region and the wall stress applied at the boundaries.Comment: 17 pages, 15 figures, to appear in Physical Review

    The COOH-terminal domain of agrin signals via a synaptic receptor in central nervous system neurons

    Get PDF
    Agrin is a motor neuron–derived factor that directs formation of the postsynaptic apparatus of the neuromuscular junction. Agrin is also expressed in the brain, raising the possibility that it might serve a related function at neuron–neuron synapses. Previously, we identified an agrin signaling pathway in central nervous system (CNS) neurons, establishing the existence of a neural receptor that mediates responses to agrin. As a step toward identifying this agrin receptor, we have characterized the minimal domains in agrin that bind and activate it. Structures required for agrin signaling in CNS neurons are contained within a 20-kD COOH-terminal fragment of the protein. Agrin signaling is independent of alternative splicing at the z site, but requires sequences that flank it because their deletion results in a 15-kD fragment that acts as an agrin antagonist. Thus, distinct regions within agrin are responsible for receptor binding and activation. Using the minimal agrin fragments as affinity probes, we also studied the expression of the agrin receptor on CNS neurons. Our results show that both agrin and its receptor are concentrated at neuron–neuron synapses. These data support the hypothesis that agrin plays a role in formation and/or function of CNS synapses
    • …
    corecore