214 research outputs found

    Three Dimensional (3D) Printable Gel-Inks for Skin Tissue Regeneration

    Get PDF
    Recent and rapid progression in three-dimensional (3D) printing techniques has revolutionized conventional therapies in medicine; 3D printed constructs are gradually being recognized as common substitutes for the replacement of skin wounds. As gel-inks, large numbers of natural and synthetic (e.g., collagen and polyurethane, respectively) substances were used to be printed into different shapes and sizes for managing both acute and chronic skin wounds. The resultant 3D printed scaffolds not only provide physical support but also act as supporting niches for improving immunomodulation and vascularization and subsequent accelerated wound healing. Recently, the use of thermosensitive and pH-responsive gels has made it possible to prepare 3D printed constructs with the ability to facilitate in situ crosslinking within the biopolymer and with native wound edge tissue as well as to fill the exact shape of wound damage. In this chapter, we aim to introduce the current state of 3D printable gel-inks utilized for skin wound treatment and illustrate future prospects in this amazing area of science

    Microtensile bond strength of ceramic to resin using different silanes

    Get PDF
    Oral Session - Dental Materials 1: Adhesion - Bond Strength Testing and Mechanisms: 9. Cement Adhesion to Ceramics: no. 27OBJECTIVES: The purpose of this study was to assess the micro-tensile bond strength of a leucite-reinforced feldspathic ceramic to a resin cement using different types of silane primers. METHODS: 18 leucite-reinforced feldspathic ceramic blocks (Ceramco II, Dentsply) in dimensional of 6×6×6 mm were fabricated. The ceramic blocks were ground on wet SiC papers and then cleansed ultrasonically in distilled water. The bonding ceramic surfaces were treated with different silane solutions as follows: Commercial silane as control: Monobond S (Ivoclar-Vivadent); methacryloxypropyl silane and experimental silanes with two concentrations (1% and 2.5%): amino, isocyanate, styryl, and acrylate silanes. The silane application method consisted of ...postprin

    Antioxidant Effects of Bioactive Glasses (BGs) and Their Significance in Tissue Engineering Strategies

    Get PDF
    Elevated levels of oxidative stress are usually observed following injuries, leading to impaired tissue repair due to oxidation-related chronic inflammation. Several attempts have been made to manage this unfavorable situation, and the use of biomaterials with antioxidant activity is showing great promise in tissue engineering and regenerative medicine approaches. Bioactive glasses (BGs) are a versatile group of inorganic substances that exhibit an outstanding regenerative capacity for both hard and soft damaged tissues. The chemical composition of BGs provides a great opportunity for imparting specific biological activities to them. On this point, BGs may easily become antioxidant substances through simple physicochemical modifications. For example, particular antioxidant elements (mostly cerium (Ce)) can be added to the basic composition of the glasses. On the other hand, grafting natural antioxidant substances (e.g., polyphenols) on the BG surface is feasible for making antioxidant substitutes with promising results in vitro. Mesoporous BGs (MBGs) were demonstrated to have unique merits compared with melt-derived BGs since they make it possible to load antioxidants and deliver them to the desired locations. However, there are actually limited in vivo experimental studies on the capability of modified BGs for scavenging free radicals (e.g., reactive oxygen species (ROS)). Therefore, more research is required to determine the actual potential of BGs in decreasing oxidative stress and subsequently improving tissue repair and regeneration. The present work aims to highlight the potential of different types of BGs in modulating oxidative stress and subsequently improving tissue healing

    Biomedical waste management by using nanophotocatalysts: The need for new options

    Get PDF
    Biomedical waste management is getting significant consideration among treatment technologies, since insufficient management can cause danger to medicinal service specialists, patients, and their environmental conditions. The improvement of waste administration protocols, plans, and policies are surveyed, despite setting up training programs on legitimate waste administration for all healthcare service staff. Most biomedical waste substances do not degrade in the environment, and may also not be thoroughly removed through treatment processes. Therefore, the long-lasting persistence of biomedical waste can effectively have adverse impact on wildlife and human beings, as well. Hence, photocatalysis is gaining increasing attention for eradication of pollutants and for improving the safety and clearness of the environment due to its great potential as a green and eco-friendly process. In this regard, nanostructured photocatalysts, in contrast to their regular counterparts, exhibit significant attributes such as non-toxicity, low cost and higher absorption efficiency in a wider range of the solar spectrum, making them the best candidate to employ for photodegradation. Due to these unique properties of nanophotocatalysts for biomedical waste management, we aim to critically evaluate various aspects of these materials in the present review and highlight their importance in healthcare service settings

    Antidepressants have complex associations with longitudinal depressive burden in bipolar disorder

    Get PDF
    Aims: Antidepressants are common in bipolar disorder (BD), but controversial due to questionable efficacy/tolerability. We assessed baseline antidepressant use/depression associations in BD. Methods: Stanford BD Clinic outpatients, enrolled during 2000\u20132011, assessed with the Systematic Treatment Enhancement Program for BD (STEP-BD) Affective Disorders Evaluation, were monitored up to two years with the STEP-BD Clinical Monitoring Form while receiving naturalistic expert treatment. Prevalence/correlates of baseline antidepressant use in recovered (euthymic 658 weeks)/depressed patients were assessed. Kaplan\u2013Meier survival analyses assessed times to depressive recurrence/recovery in patients with/without baseline antidepressant use, and Cox Proportional Hazard regression analyses assessed covariate effects. Results: Baseline antidepressant use was significantly (albeit without Bonferroni multiple comparison correction) less among 105 recovered (31.4%) versus 153 depressed (44.4%) patients, and among recovered patients (again without Bonferroni correction), associated with Caucasian race, earlier onset, worse Clinical Global Impression scores, and hastened depressive recurrence (only if mood elevation episodes were not censored), driven by lifetime anxiety disorder, and more (even with Bonferroni correction) bipolar II disorder, lifetime anxiety and eating disorders, and core psychotropics. Baseline antidepressant use among depressed patients was associated with significantly (again without Bonferroni correction) older age, female gender, and more (even with Bonferroni correction) anxiolytics/hypnotics, complex pharmacotherapy, and core psychotropics, but no other unfavorable illness characteristic/current mood symptom, and not time to depressive recovery. Limitations: Tertiary BD clinic referral sample receiving open naturalistic expert treatment. Analyses without/with Bonferroni correction. Conclusions: Additional research is required to assess the complex associations between baseline antidepressant use and longitudinal depressive burden in BD

    Differential core pharmacotherapy in bipolar I versus bipolar II disorder and European versus American patients not in a syndromal episode

    Get PDF
    Assess bipolar disorder subtype and treatment location effects on bipolar disorder core pharmacotherapy. Outpatients not in a syndromal episode referred to the University of Milan and Stanford University Bipolar Disorder Clinics were assessed with SCID for the fourth Edition of the Diagnostic and Statistical Manual of Mood Disorders, and the Systematic Treatment Enhancement Program for Bipolar Disorder Affective Disorders Evaluation, respectively. Prevalence and clinical correlates of antidepressant, antipsychotic, and mood stabilizer use, in aggregate and individually, were compared in bipolar I (BDI) versus II (BDII) patients in Milan/Stanford and in Milan versus Stanford patients, stratified by subtype. Milan/Stanford pooled BDI versus BDII patients significantly more often took antipsychotic (69.8 versus 44.8%), mood stabilizers (68.6 versus 57.7%), and valproate (40.1 versus 17.5%), and less often took antidepressants (23.1 versus 55.6%) and lamotrigine (9.9 versus 25.2%). Milan versus Stanford patients (stratified by bipolar disorder subtype) significantly more often took antipsychotic (BDI and BDII), antidepressants (BDII), and valproate (BDII), and less often took lamotrigine (BDI). Research regarding bipolar disorder core pharmacotherapy relationships with bipolar subtype and treatment location is warranted to enhance clinical management

    Paired plasma lipidomics and proteomics analysis in the conversion from mild cognitive impairment to Alzheimer's disease.

    Get PDF
    Alzheimer's disease (AD) is a neurodegenerative condition for which there is currently no available medication that can stop its progression. Previous studies suggest that mild cognitive impairment (MCI) is a phase that precedes the disease. Therefore, a better understanding of the molecular mechanisms behind MCI conversion to AD is needed. Here, we propose a machine learning-based approach to detect the key metabolites and proteins involved in MCI progression to AD using data from the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery Study. Proteins and metabolites were evaluated separately in multiclass models (controls, MCI and AD) and together in MCI conversion models (MCI stable vs converter). Only features selected as relevant by 3/4 algorithms proposed were kept for downstream analysis. Multiclass models of metabolites highlighted nine features further validated in an independent cohort (0.726 mean balanced accuracy). Among these features, one metabolite, oleamide, was selected by all the algorithms. Further in-vitro experiments in rodents showed that disease-associated microglia excreted oleamide in vesicles. Multiclass models of proteins stood out with nine features, validated in an independent cohort (0.720 mean balanced accuracy). However, none of the proteins was selected by all the algorithms. Besides, to distinguish between MCI stable and converters, 14 key features were selected (0.872 AUC), including tTau, alpha-synuclein (SNCA), junctophilin-3 (JPH3), properdin (CFP) and peptidase inhibitor 15 (PI15) among others. This omics integration approach highlighted a set of molecules associated with MCI conversion important in neuronal and glia inflammation pathways

    Essential Nutrients for Bone Health and a Review of their Availability in the Average North American Diet

    Get PDF
    Osteoporosis and low bone mineral density affect millions of Americans. The majority of adults in North America have insufficient intake of vitamin D and calcium along with inadequate exercise. Physicians are aware that vitamin D, calcium and exercise are essential for maintenance of bone health. Physicians are less likely to be aware that dietary insufficiencies of magnesium, silicon, Vitamin K, and boron are also widely prevalent, and each of these essential nutrients is an important contributor to bone health. In addition, specific nutritional factors may improve calcium metabolism and bone formation. It is the authors’ opinion that nutritional supplements should attempt to provide ample, but not excessive, amounts of factors that are frequently insufficient in the typical American diet

    LRP1 Regulates Architecture of the Vascular Wall by Controlling PDGFRβ-Dependent Phosphatidylinositol 3-Kinase Activation

    Get PDF
    Low density lipoprotein receptor-related protein 1 (LRP1) protects against atherosclerosis by regulating the activation of platelet-derived growth factor receptor beta (PDGFRbeta) in vascular smooth muscle cells (SMCs). Activated PDGFRbeta undergoes tyrosine phosphorylation and subsequently interacts with various signaling molecules, including phosphatidylinositol 3-kinase (PI3K), which binds to the phosphorylated tyrosine 739/750 residues in mice, and thus regulates actin polymerization and cell movement.In this study, we found disorganized actin in the form of membrane ruffling and enhanced cell migration in LRP1-deficient (LRP1-/-) SMCs. Marfan syndrome-like phenotypes such as tortuous aortas, disrupted elastic layers and abnormally activated transforming growth factor beta (TGFbeta) signaling are present in smooth muscle-specific LRP1 knockout (smLRP1-/-) mice. To investigate the role of LRP1-regulated PI3K activation by PDGFRbeta in atherogenesis, we generated a strain of smLRP1-/- mice in which tyrosine 739/750 of the PDGFRbeta had been mutated to phenylalanines (PDGFRbeta F2/F2). Spontaneous atherosclerosis was significantly reduced in the absence of hypercholesterolemia in these mice compared to smLRP1-/- animals that express wild type PDGFR. Normal actin organization was restored and spontaneous SMC migration as well as PDGF-BB-induced chemotaxis was dramatically reduced, despite continued overactivation of TGFbeta signaling, as indicated by high levels of nuclear phospho-Smad2.Our data suggest that LRP1 regulates actin organization and cell migration by controlling PDGFRbeta-dependent activation of PI3K. TGFbeta activation alone is not sufficient for the expression of the Marfan-like vascular phenotype. Thus, regulation of PI3 Kinase by PDGFRbeta is essential for maintaining vascular integrity, and for the prevention of atherosclerosis as well as Marfan syndrome
    corecore