354 research outputs found
Low-Energy Signals from Kinetic Mixing with a Warped Abelian Hidden Sector
We investigate the detailed phenomenology of a light Abelian hidden sector in
the Randall-Sundrum framework. Relative to other works with light hidden
sectors, the main new feature is a tower of hidden Kaluza-Klein vectors that
kinetically mix with the Standard Model photon and Z. We investigate the decay
properties of the hidden sector fields in some detail, and develop an approach
for calculating processes initiated on the ultraviolet brane of a warped space
with large injection momentum relative to the infrared scale. Using these
results, we determine the detailed bounds on the light warped hidden sector
from precision electroweak measurements and low-energy experiments. We find
viable regions of parameter space that lead to significant production rates for
several of the hidden Kaluza-Klein vectors in meson factories and fixed-target
experiments. This offers the possibility of exploring the structure of an extra
spacetime dimension with lower-energy probes.Comment: (1+32) Pages, 13 Figures. v2: JHEP version (minor modifications,
results unchanged
Low-Energy Probes of a Warped Extra Dimension
We investigate a natural realization of a light Abelian hidden sector in an
extended Randall-Sundrum (RS) model. In addition to the usual RS bulk we
consider a second warped space containing a bulk U(1)_x gauge theory with a
characteristic IR scale of order a GeV. This Abelian hidden sector can couple
to the standard model via gauge kinetic mixing on a common UV brane. We show
that if such a coupling induces significant mixing between the lightest U(1)_x
gauge mode and the standard model photon and Z, it can also induce significant
mixing with the heavier U(1)_x Kaluza-Klein (KK) modes. As a result it might be
possible to probe several KK modes in upcoming fixed-target experiments and
meson factories, thereby offering a new way to investigate the structure of an
extra spacetime dimension.Comment: 26 pages, 1 figure, added references, corrected minor typos, same as
journal versio
Secluded Dark Matter Coupled to a Hidden CFT
Models of secluded dark matter offer a variant on the standard WIMP picture
and can modify our expectations for hidden sector phenomenology and detection.
In this work we extend a minimal model of secluded dark matter, comprised of a
U(1)'-charged dark matter candidate, to include a confining hidden-sector CFT.
This provides a technically natural explanation for the hierarchically small
mediator-scale, with hidden-sector confinement generating m_{gamma'}>0.
Furthermore, the thermal history of the universe can differ markedly from the
WIMP picture due to (i) new annihilation channels, (ii) a (potentially) large
number of hidden-sector degrees of freedom, and (iii) a hidden-sector phase
transition at temperatures T << M_{dm} after freeze out. The mediator allows
both the dark matter and the Standard Model to communicate with the CFT, thus
modifying the low-energy phenomenology and cosmic-ray signals from the secluded
sector.Comment: ~50p, 8 figs; v2 JHEP versio
To retain or remove the syndesmotic screw: a review of literature
Introduction: Syndesmotic positioning screws are frequently placed in unstable ankle fractures. Many facets of adequate placement techniques have been the subject of various studies. Whether or not the syndesmosis screw should be removed prior to weight-bearing is still debated. In this study, the recent literature is reviewed concerning the need for removal of the syndesmotic screw. Materials and methods: A comprehensive literature search was conducted in the electronic databases of the Cochrane Library, Pubmed Medline and EMbase from January 2000 to October 2010. Results: A total of seven studies were identified in the literature. Most studies found no difference in outcome between retained or removed screws. Patients with screws that were broken, or showed loosening, had similar or improved outcome compared to patients with removed screws. Removal of the syndesmotic screws, when deemed necessary, is usually not performed before 8-12 weeks. Conclusion: There is paucity in randomized controlled trials on the absolute need for removal of the syndesmotic screw. However, current literature suggests that it might be reserved for intact screws that cause hardware irritation or reduced range of motion after 4-6 months
Backward walking training improves balance in school-aged boys
<p>Abstract</p> <p>Background</p> <p>Falls remain a major cause of childhood morbidity and mortality. It is suggested that backward walking (BW) may offer some benefits especially in balance and motor control ability beyond those experienced through forward walking (FW), and may be a potential intervention for prevention of falls. The objective of this study was to investigate the effects of BW on balance in boys.</p> <p>Methods</p> <p>Sixteen healthy boys (age: 7.19 ± 0.40 y) were randomly assigned to either an experimental or a control group. The experimental group participated in a BW training program (12-week, 2 times weekly, and 25-min each time) but not the control group. Both groups had five dynamic balance assessments with a Biodex Stability System (anterior/posterior, medial/lateral, and overall balance index) before, during and after the training (week- 0, 4, 8, 12, 24). Six control and six experimental boys participated in a study comparing kinematics of lower limbs between FW and BW after the training (week-12).</p> <p>Results</p> <p>The balance of experimental group was better than that of control group after 8 weeks of training (<it>P </it>< 0.01), and was still better than that of control group (<it>P </it>< 0.05), when the BW training program had finished for 12 weeks. The kinematic analysis indicated that there was no difference between control and experimental groups in the kinematics of both FW and BW gaits after the BW training (<it>P </it>> 0.05). Compared to FW, the duration of stance phase of BW tended to be longer, while the swing phase, stride length, walking speed, and moving ranges of the thigh, calf and foot of BW decreased (<it>P </it>< 0.01).</p> <p>Conclusion</p> <p>Backward walking training in school-aged boys can improve balance.</p
Coexistence via Resource Partitioning Fails to Generate an Increase in Community Function
Classic ecological theory suggests that resource partitioning facilitates the coexistence of species by reducing inter-specific competition. A byproduct of this process is an increase in overall community function, because a greater spectrum of resources can be used. In contrast, coexistence facilitated by neutral mechanisms is not expected to increase function. We studied coexistence in laboratory microcosms of the bactivorous ciliates Paramecium aurelia and Colpidium striatum to understand the relationship between function and coexistence mechanism. We quantified population and community-level function (biomass and oxygen consumption), competitive interactions, and resource partitioning. The two ciliates partitioned their bacterial resource along a size axis, with the larger ciliate consuming larger bacteria than the smaller ciliate. Despite this, there was no gain in function at the community level for either biomass or oxygen consumption, and competitive effects were symmetrical within and between species. Because other potential coexistence mechanisms can be ruled out, it is likely that inter-specific interference competition diminished the expected gain in function generated by resource partitioning, leading to a system that appeared competitively neutral even when structured by niche partitioning. We also analyzed several previous studies where two species of protists coexisted and found that the two-species communities showed a broad range of biomass levels relative to the single-species states
Clustered Gene Expression Changes Flank Targeted Gene Loci in Knockout Mice
Gene expression profiling using microarrays is a powerful technology widely used to study regulatory networks. Profiling of mRNA levels in mutant organisms has the potential to identify genes regulated by the mutated protein.Using tissues from multiple lines of knockout mice we have examined genome-wide changes in gene expression. We report that a significant proportion of changed genes were found near the targeted gene.The apparent clustering of these genes was explained by the presence of flanking DNA from the parental ES cell. We provide recommendations for the analysis and reporting of microarray data from knockout mice
A Review of the Adverse Effects of Peripheral Alpha-1 Antagonists in Hypertension Therapy
BACKGROUND: Doxazosin and its role as an antihypertensive agent have come under recent scrutiny as a result of the early termination of that treatment arm in ALLHAT. It is unclear why the cardiovascular (CV) event rate in this randomized, controlled trial (RCT), especially heart failure, is higher in those treated with a doxazosin-based regimen than with a chlorthalidone based-regimen. There has been little work in the past to summarize information on peripheral alpha-1 antagonists that may be helpful in evaluating the results of this randomized controlled trial. METHODS: Using Medline and the Cochrane databases, we performed a comprehensive review of the literature on the use of peripheral alpha-1 antagonists as antihypertensive agents, focusing on available information that could explain the excess cardiovascular events observed in the Antihypertensive and Lipid-Lowering Treatment to prevent Heart Attack Trial (ALLHAT). RESULTS: Minimal data were available concerning the effects of peripheral alpha-1 antagonists on CV endpoints. A multitude of short-term studies-ranging from small observational studies to short-term moderate-sized RCTs – focused on safety, efficacy, and tolerability, and some studies investigated the physiologic effects of these agents. These previously reported studies reveal associations with weight gain, fluid retention, and neurohormonal changes among various populations of those treated with peripheral alpha-1 antagonists. CONCLUSION: These findings suggest several possible mechanisms by which doxazosin may be inferior to low-dose diuretics as antihypertensive therapy for the prevention of heart failure
The Effects of Copper Pollution on Fouling Assemblage Diversity: A Tropical-Temperate Comparison
BACKGROUND: The invasion of habitats by non-indigenous species (NIS) occurs at a global scale and can generate significant ecological, evolutionary, economic and social consequences. Estuarine and coastal ecosystems are particularly vulnerable to pollution from numerous sources due to years of human-induced degradation and shipping. Pollution is considered as a class of disturbance with anthropogenic roots and recent studies have concluded that high frequencies of disturbance may facilitate invasions by increasing the availability of resources. METHODOLOGY/PRINCIPAL FINDINGS: To examine the effects of heavy metal pollution as disturbance in shaping patterns of exotic versus native diversity in marine fouling communities we exposed fouling communities to different concentrations of copper in one temperate (Virginia) and one tropical (Panama) region. Diversity was categorized as total, native and non-indigenous and we also incorporated taxonomic and functional richness. Our findings indicate that total fouling diversity decreased with increasing copper pollution, whether taxonomic or functional diversity is considered. Both native and non-indigenous richness decreased with increasing copper concentrations at the tropical site whereas at the temperate site, non-indigenous richness was too low to detect any effect. CONCLUSIONS/SIGNIFICANCE: Non-indigenous richness decreased with increasing metal concentrations, contradicting previous investigations that evaluate the influence of heavy metal pollution on diversity and invasibility of fouling assemblages. These results provide first insights on how the invasive species pool in a certain region may play a key role in the disturbance vs. non-indigenous diversity relationship
Transcriptome Sequencing and De Novo Analysis for Yesso Scallop (Patinopecten yessoensis) Using 454 GS FLX
BACKGROUND: Bivalves comprise 30,000 extant species, constituting the second largest group of mollusks. However, limited genetic research has focused on this group of animals so far, which is, in part, due to the lack of genomic resources. The advent of high-throughput sequencing technologies enables generation of genomic resources in a short time and at a minimal cost, and therefore provides a turning point for bivalve research. In the present study, we performed de novo transcriptome sequencing to first produce a comprehensive expressed sequence tag (EST) dataset for the Yesso scallop (Patinopecten yessoensis). RESULTS: In a single 454 sequencing run, 805,330 reads were produced and then assembled into 32,590 contigs, with about six-fold sequencing coverage. A total of 25,237 unique protein-coding genes were identified from a variety of developmental stages and adult tissues based on sequence similarities with known proteins. As determined by GO annotation and KEGG pathway mapping, functional annotation of the unigenes recovered diverse biological functions and processes. Transcripts putatively involved in growth, reproduction and stress/immune-response were identified. More than 49,000 single nucleotide polymorphisms (SNPs) and 2,700 simple sequence repeats (SSRs) were also detected. CONCLUSION: Our data provide the most comprehensive transcriptomic resource currently available for P. yessoensis. Candidate genes potentially involved in growth, reproduction, and stress/immunity-response were identified, and are worthy of further investigation. A large number of SNPs and SSRs were also identified and ready for marker development. This resource should lay an important foundation for future genetic or genomic studies on this species
- …
