6,446 research outputs found

    A synopsis of recent North American microtine rodents

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/56364/1/MP120.pd

    Temperature sensitivity of the pyloric neuromuscular system and its modulation by dopamine

    Get PDF
    We report here the effects of temperature on the p1 neuromuscular system of the stomatogastric system of the lobster (Panulirus interruptus). Muscle force generation, in response to both the spontaneously rhythmic in vitro pyloric network neural activity and direct, controlled motor nerve stimulation, dramatically decreased as temperature increased, sufficiently that stomach movements would very unlikely be maintained at warm temperatures. However, animals fed in warm tanks showed statistically identical food digestion to those in cold tanks. Applying dopamine, a circulating hormone in crustacea, increased muscle force production at all temperatures and abolished neuromuscular system temperature dependence. Modulation may thus exist not only to increase the diversity of produced behaviors, but also to maintain individual behaviors when environmental conditions (such as temperature) vary

    Deed, property transfer, B.S. Hooper and wife to H.E. Wall, 1883

    Get PDF

    Kaluza-Klein Dark Matter, Electrons and Gamma Ray Telescopes

    Full text link
    Kaluza-Klein dark matter particles can annihilate efficiently into electron-positron pairs, providing a discrete feature (a sharp edge) in the cosmic e+e−e^+ e^- spectrum at an energy equal to the particle's mass (typically several hundred GeV to one TeV). Although this feature is probably beyond the reach of satellite or balloon-based cosmic ray experiments (those that distinguish the charge and mass of the primary particle), gamma ray telescopes may provide an alternative detection method. Designed to observe very high-energy gamma-rays, ACTs also observe the diffuse flux of electron-induced electromagnetic showers. The GLAST satellite, designed for gamma ray astronomy, will also observe any high energy showers (several hundred GeV and above) in its calorimeter. We show that high-significance detections of an electron-positron feature from Kaluza-Klein dark matter annihilations are possible with GLAST, and also with ACTs such as HESS, VERITAS or MAGIC.Comment: 10 pages, 2 figure

    Spinless photon dark matter from two universal extra dimensions

    Full text link
    We explore the properties of dark matter in theories with two universal extra dimensions, where the lightest Kaluza-Klein state is a spin-0 neutral particle, representing a six-dimensional photon polarized along the extra dimensions. Annihilation of this 'spinless photon' proceeds predominantly through Higgs boson exchange, and is largely independent of other Kaluza-Klein particles. The measured relic abundance sets an upper limit on the spinless photon mass of 500 GeV, which decreases to almost 200 GeV if the Higgs boson is light. The phenomenology of this dark matter candidate is strikingly different from Kaluza-Klein dark matter in theories with one universal extra dimension. Elastic scattering of the spinless photon with quarks is helicity suppressed, making its direct detection challenging, although possible at upcoming experiments. The prospects for indirect detection with gamma rays and antimatter are similar to those of neutralinos. The rates predicted at neutrino telescopes are below the sensitivity of next-generation experiments.Comment: 22 pages. Figure 7 corrected, leading to improved prospects for direct detection. Some clarifying remarks include

    Evaluating Banking Websites Privacy Statements – A New Zealand Perspective on Ensuring Business Confidence

    Get PDF
    Because banks deal with highly personal detailed and sensitive information, they need to establish and maintain the confidence of their customers more assiduously than most other businesses. The rise of internet banking and the advantages to be gained from the garnering of personal data from websites places banks in a position to exploit customer data in a way that might infringe ethical considerations. This investigation analyses the website privacy statements of New Zealand banks in terms of the provisions of the New Zealand Privacy Act. The intention was to find an objective basis for the assessment of business integrity, to explore how confidence in electronic commerce can be assured. The investigation finds that the use of privacy legislation principles as a means of evaluating website privacy statements is revealing and convincing. It is considered that customer confidence will increasingly impact on Internet businesses, and business integrity as demonstrated by comprehensive and relevant privacy statements will go a long way to provide those assurances

    Why Compact Tori For Fusion?

    Get PDF
    A compact torus (CT) has a toroidal magnetic and plasma geometry, but is contained within a simply-connected vacuum vessel such as a cylinder. Spheromaks and field-reversed configurations fall into this category. Compact tori are translatable and have a high engineering beta. The primary benefit of CTs for fusion is the absence of toroidal field and Ohmic Heating coils and the many problems brought on by them. Studying fusion-relevant plasma in simply-connected geometries affords the world fusion program both physics and technology opportunities not found in other configurations. This paper outlines the technology and physics opportunities of compact tori, and presents a cost model based on geometry for comparison with less compact configurations

    Plasma Physics

    Get PDF
    Contains research objectives and reports on four research projects.U.S. Atomic Energy Commission (Contract AT(30- 1)- 1842)U.S. Air Force (Electronic Systems Division) under Contract AF 19(604)- 599

    Predictions for the Cosmogenic Neutrino Flux in Light of New Data from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory (PAO) has measured the spectrum and composition of the ultrahigh energy cosmic rays with unprecedented precision. We use these measurements to constrain their spectrum and composition as injected from their sources and, in turn, use these results to estimate the spectrum of cosmogenic neutrinos generated in their propagation through intergalactic space. We find that the PAO measurements can be well fit if the injected cosmic rays consist entirely of nuclei with masses in the intermediate (C, N, O) to heavy (Fe, Si) range. A mixture of protons and heavier species is also acceptable but (on the basis of existing hadronic interaction models) injection of pure light nuclei (p, He) results in unacceptable fits to the new elongation rate data. The expected spectrum of cosmogenic neutrinos can vary considerably, depending on the precise spectrum and chemical composition injected from the cosmic ray sources. In the models where heavy nuclei dominate the cosmic ray spectrum and few dissociated protons exceed GZK energies, the cosmogenic neutrino flux can be suppressed by up to two orders of magnitude relative to the all-proton prediction, making its detection beyond the reach of current and planned neutrino telescopes. Other models consistent with the data, however, are proton-dominated with only a small (1-10%) admixture of heavy nuclei and predict an associated cosmogenic flux within the reach of upcoming experiments. Thus a detection or non-detection of cosmogenic neutrinos can assist in discriminating between these possibilities.Comment: 10 pages, 7 figure

    Section on Prospects for Dark Matter Detection of the White Paper on the Status and Future of Ground-Based TeV Gamma-Ray Astronomy

    Full text link
    This is a report on the findings of the dark matter science working group for the white paper on the status and future of TeV gamma-ray astronomy. The white paper was commissioned by the American Physical Society, and the full white paper can be found on astro-ph (arXiv:0810.0444). This detailed section discusses the prospects for dark matter detection with future gamma-ray experiments, and the complementarity of gamma-ray measurements with other indirect, direct or accelerator-based searches. We conclude that any comprehensive search for dark matter should include gamma-ray observations, both to identify the dark matter particle (through the charac- teristics of the gamma-ray spectrum) and to measure the distribution of dark matter in galactic halos.Comment: Report from the Dark Matter Science Working group of the APS commissioned White paper on ground-based TeV gamma ray astronomy (19 pages, 9 figures
    • …
    corecore