5,767 research outputs found

    Recurrence in generic staircases

    Full text link
    The straight-line flow on almost every staircase and on almost every square tiled staircase is recurrent. For almost every square tiled staircase the set of periodic orbits is dense in the phase space

    Evidence Of Dark Matter Annihilations In The WMAP Haze

    Full text link
    The WMAP experiment has revealed an excess of microwave emission from the region around the center of our Galaxy. It has been suggested that this signal, known as the ``WMAP Haze'', could be synchrotron emission from relativistic electrons and positrons generated in dark matter annihilations. In this letter, we revisit this possibility. We find that the angular distribution of the WMAP Haze matches the prediction for dark matter annihilations with a cusped density profile, ρ(r)r1.2\rho(r) \propto r^{-1.2} in the inner kiloparsecs. Comparing the intensity in different WMAP frequency bands, we find that a wide range of possible WIMP annihilation modes are consistent with the spectrum of the haze for a WIMP with a mass in the 100 GeV to multi-TeV range. Most interestingly, we find that to generate the observed intensity of the haze, the dark matter annihilation cross section is required to be approximately equal to the value needed for a thermal relic, σv3×1026\sigma v \sim 3 \times 10^{-26} cm3^3/s. No boost factors are required. If dark matter annihilations are in fact responsible for the WMAP Haze, and the slope of the halo profile continues into the inner Galaxy, GLAST is expected to detect gamma rays from the dark matter annihilations in the Galactic Center if the WIMP mass is less than several hundred GeV.Comment: 4 pages, 3 figure

    Pierre Auger Data, Photons, and Top-Down Cosmic Ray Models

    Full text link
    We consider the ultra-high energy cosmic ray (UHECR) spectrum as measured by the Pierre Auger Observatory. Top-down models for the origin of UHECRs predict an increasing photon component at energies above about 1019.710^{19.7}eV. Here we present a simple prescription to compare the Auger data with a prediction assuming a pure proton component or a prediction assuming a changing primary component appropriate for a top-down model. We find that the UHECR spectrum predicted in top-down models is a good fit to the Auger data. Eventually, Auger will measure a composition-independent spectrum and will be capable of either confirming or excluding the quantity of photons predicted in top-down models.Comment: 8 pages, 3 figure

    Kaluza-Klein Dark Matter, Electrons and Gamma Ray Telescopes

    Full text link
    Kaluza-Klein dark matter particles can annihilate efficiently into electron-positron pairs, providing a discrete feature (a sharp edge) in the cosmic e+ee^+ e^- spectrum at an energy equal to the particle's mass (typically several hundred GeV to one TeV). Although this feature is probably beyond the reach of satellite or balloon-based cosmic ray experiments (those that distinguish the charge and mass of the primary particle), gamma ray telescopes may provide an alternative detection method. Designed to observe very high-energy gamma-rays, ACTs also observe the diffuse flux of electron-induced electromagnetic showers. The GLAST satellite, designed for gamma ray astronomy, will also observe any high energy showers (several hundred GeV and above) in its calorimeter. We show that high-significance detections of an electron-positron feature from Kaluza-Klein dark matter annihilations are possible with GLAST, and also with ACTs such as HESS, VERITAS or MAGIC.Comment: 10 pages, 2 figure

    The implications of sustainable development for airport duty-free business models

    Get PDF
    © HENRY STEWART PUBLICATIONS. This paper considers how the challenges underpinning sustainable development are likely to impact on duty-and tax-free retailing in airports and, by implication, in the entire aviation industry. The paper defines the role of retail as a vital source of airport revenues, before considering the carbon consequences of the sector’s incumbent business models. It finds that products taken onto aircraft increase aircraft weight and fuel burn and are a primary source of carbon emissions for duty-free retailers. The implications for the sector are discussed, and the potential for implementing more sustainable business models is presented. Here it is identified that the specific logistical, economic, and political constraints of operating in the airport make alternative business models difficult, if not impossible to implement. The specialisations that have helped this sector to flourish are constraining their ability to adapt to the climate challenge

    The Indirect Search for Dark Matter with IceCube

    Full text link
    We revisit the prospects for IceCube and similar kilometer-scale telescopes to detect neutrinos produced by the annihilation of weakly interacting massive dark matter particles (WIMPs) in the Sun. We emphasize that the astrophysics of the problem is understood; models can be observed or, alternatively, ruled out. In searching for a WIMP with spin-independent interactions with ordinary matter, IceCube is only competitive with direct detection experiments if the WIMP mass is sufficiently large. For spin-dependent interactions IceCube already has improved the best limits on spin-dependent WIMP cross sections by two orders of magnitude. This is largely due to the fact that models with significant spin-dependent couplings to protons are the least constrained and, at the same time, the most promising because of the efficient capture of WIMPs in the Sun. We identify models where dark matter particles are beyond the reach of any planned direct detection experiments while being within reach of neutrino telescopes. In summary, we find that, even when contemplating recent direct detection results, neutrino telescopes have the opportunity to play an important as well as complementary role in the search for particle dark matter.Comment: 17 pages, 10 figures, published in the New Journal of Physics 11 105019 http://www.iop.org/EJ/abstract/1367-2630/11/10/105019, new version submitted to correct Abstract in origina

    Searching for Dark Matter with Future Cosmic Positron Experiments

    Full text link
    Dark matter particles annihilating in the Galactic halo can provide a flux of positrons potentially observable in upcoming experiments, such as PAMELA and AMS-02. We discuss the spectral features which may be associated with dark matter annihilation in the positron spectrum and assess the prospects for observing such features in future experiments. Although we focus on some specific dark matter candidates, neutralinos and Kaluza-Klein states, we carry out our study in a model independent fashion. We also revisit the positron spectrum observed by HEAT.Comment: 19 pages, 33 figure

    The Isotropic Radio Background and Annihilating Dark Matter

    Full text link
    Observations by ARCADE-2 and other telescopes sensitive to low frequency radiation have revealed the presence of an isotropic radio background with a hard spectral index. The intensity of this observed background is found to exceed the flux predicted from astrophysical sources by a factor of approximately 5-6. In this article, we consider the possibility that annihilating dark matter particles provide the primary contribution to the observed isotropic radio background through the emission of synchrotron radiation from electron and positron annihilation products. For reasonable estimates of the magnetic fields present in clusters and galaxies, we find that dark matter could potentially account for the observed radio excess, but only if it annihilates mostly to electrons and/or muons, and only if it possesses a mass in the range of approximately 5-50 GeV. For such models, the annihilation cross section required to normalize the synchrotron signal to the observed excess is sigma v ~ (0.4-30) x 10^-26 cm^3/s, similar to the value predicted for a simple thermal relic (sigma v ~ 3 x 10^-26 cm^3/s). We find that in any scenario in which dark matter annihilations are responsible for the observed excess radio emission, a significant fraction of the isotropic gamma ray background observed by Fermi must result from dark matter as well.Comment: 11 pages, 6 figure

    Hypoalbuminaemia predicts outcome in adult patients with congenital heart disease

    Get PDF
    Background In patients with acquired heart failure, hypoalbuminaemia is associated with increased risk of death. The prevalence of hypoproteinaemia and hypoalbuminaemia and their relation to outcome in adult patients with congenital heart disease (ACHD) remains, however, unknown. Methods Data on patients with ACHD who underwent blood testing in our centre within the last 14 years were collected. The relation between laboratory, clinical or demographic parameters at baseline and mortality was assessed using Cox proportional hazards regression analysis. Results A total of 2886 patients with ACHD were included. Mean age was 33.3 years (23.6–44.7) and 50.1% patients were men. Median plasma albumin concentration was 41.0 g/L (38.0–44.0), whereas hypoalbuminaemia (<35 g/L) was present in 13.9% of patients. The prevalence of hypoalbuminaemia was significantly higher in patients with great complexity ACHD (18.2%) compared with patients with moderate (11.3%) or simple ACHD lesions (12.1%, p<0.001). During a median follow-up of 5.7 years (3.3–9.6), 327 (11.3%) patients died. On univariable Cox regression analysis, hypoalbuminaemia was a strong predictor of outcome (HR 3.37, 95% CI 2.67 to 4.25, p<0.0001). On multivariable Cox regression, after adjusting for age, sodium and creatinine concentration, liver dysfunction, functional class and disease complexity, hypoalbuminaemia remained a significant predictor of death. Conclusions Hypoalbuminaemia is common in patients with ACHD and is associated with a threefold increased risk of risk of death. Hypoalbuminaemia, therefore, should be included in risk-stratification algorithms as it may assist management decisions and timing of interventions in the growing ACHD population

    Limits on Supersymmetric Dark Matter From EGRET Observations of the Galactic Center Region

    Get PDF
    In most supersymmetic models, neutralino dark matter particles are predicted to accumulate in the Galactic center and annihilate generating, among other products, gamma rays. The EGRET experiment has made observations in this region, and is sensitive to gamma rays from 30 MeV to \sim30 GeV. We have used an improved point source analysis including an energy dependent point spread function and an unbinned maximum likelihood technique, which has allowed us to significantly lower the limits on gamma ray flux from the Galactic center. We find that the present EGRET data can limit many supersymmetric models if the density of the Galactic dark matter halo is cuspy or spiked toward the Galactic center. We also discuss the ability of GLAST to test these models.Comment: 4 pages, 3 figure
    corecore