3,584 research outputs found
Payload/orbiter contamination control requirement study: Computer interface
The MSFC computer facilities, and future plans for them are described relative to characteristics of the various computers as to availability and suitability for processing the contamination program. A listing of the CDC 6000 series and UNIVAC 1108 characteristics is presented so that programming requirements can be compared directly and differences noted
Payload/orbiter contamination control requirement study: Preliminary contamination mission support plan
Progress is reported on the mission support plan and those support activities envisioned to be applicable and necessary during premission and postmission phases of the Spacelab program. The purpose, role, and requirements of the contamination control operations for the first two missions of the Spacelab equipped Space Transportation System are discussed. The organization of the contamination control operation and its relationship to and interfaces with other mission support functions is also discussed. Some specific areas of contamination to be investigated are treated. They are: (1) windows and viewports, (2) experiment equipment, (3) thermal control surfaces, (4) the contaminant induced atmosphere (as differentiated from the normal ambient atmosphere at the orbit altitude), and (5) optical navigation instruments
Towards low-latency real-time detection of gravitational waves from compact binary coalescences in the era of advanced detectors
Electromagnetic (EM) follow-up observations of gravitational wave (GW) events
will help shed light on the nature of the sources, and more can be learned if
the EM follow-ups can start as soon as the GW event becomes observable. In this
paper, we propose a computationally efficient time-domain algorithm capable of
detecting gravitational waves (GWs) from coalescing binaries of compact objects
with nearly zero time delay. In case when the signal is strong enough, our
algorithm also has the flexibility to trigger EM observation before the merger.
The key to the efficiency of our algorithm arises from the use of chains of
so-called Infinite Impulse Response (IIR) filters, which filter time-series
data recursively. Computational cost is further reduced by a template
interpolation technique that requires filtering to be done only for a much
coarser template bank than otherwise required to sufficiently recover optimal
signal-to-noise ratio. Towards future detectors with sensitivity extending to
lower frequencies, our algorithm's computational cost is shown to increase
rather insignificantly compared to the conventional time-domain correlation
method. Moreover, at latencies of less than hundreds to thousands of seconds,
this method is expected to be computationally more efficient than the
straightforward frequency-domain method.Comment: 19 pages, 6 figures, for PR
Payload/orbiter contamination control requirement study, volume 2, exhibit A
The computer printout data generated during the Payload/Orbiter Contamination Control Requirement Study are presented. The computer listings of the input surface data matrices, the viewfactor data matrices, and the geometric relationship data matrices for the three orbiter/spacelab configurations analyzed in this study are given. These configurations have been broken up into the geometrical surfaces and nodes necessary to define the principal critical surfaces whether they are contaminant sources, experimental surfaces, or operational surfaces. A numbering scheme was established based upon nodal numbers that relates the various spacelab surfaces to a specific surface material or function. This numbering system was developed for the spacelab configurations such that future extension to a surface mapping capability could be developed as required
Payload/orbiter contamination control requirement study: Computer interface
A preliminary assessment of the computer interface requirements of the Spacelab configuration contamination computer model was conducted to determine the compatibility of the program, as presently formatted, with the computer facilities at MSFC. The necessary Spacelab model modifications are pointed out. The MSFC computer facilities and their future plans are described, and characteristics of the various computers as to availability and suitability for processing the contamination program are discussed. A listing of the CDC 6000 series and UNIVAC 1108 characteristics is presented so that programming requirements can be compared directly and differences noted
Summed Parallel Infinite Impulse Response (SPIIR) Filters For Low-Latency Gravitational Wave Detection
With the upgrade of current gravitational wave detectors, the first detection
of gravitational wave signals is expected to occur in the next decade.
Low-latency gravitational wave triggers will be necessary to make fast
follow-up electromagnetic observations of events related to their source, e.g.,
prompt optical emission associated with short gamma-ray bursts. In this paper
we present a new time-domain low-latency algorithm for identifying the presence
of gravitational waves produced by compact binary coalescence events in noisy
detector data. Our method calculates the signal to noise ratio from the
summation of a bank of parallel infinite impulse response (IIR) filters. We
show that our summed parallel infinite impulse response (SPIIR) method can
retrieve the signal to noise ratio to greater than 99% of that produced from
the optimal matched filter. We emphasise the benefits of the SPIIR method for
advanced detectors, which will require larger template banks.Comment: 9 pages, 6 figures, for PR
Investigation of Integrated Twin Corner Reflectors Designed for 3-D InSAR Applications
There are potentially dangerous areas where InSAR technology cannot be applied routinely in the absence of proper persistent or distributed scatterers. Here, we planned and investigated the use of truncated trihedral triangle corner reflectors (CRs) oriented to ascending and descending directions for Sentinel-1 orbit, which were mounted on the optimal concrete basement including an additional global navigation satellite system (GNSS) adapter. These integrated benchmarks were designed to produce a signal-to-clutter ratio of about 100 (i.e., 20 dB). The mechanical design allows optimal orientation of the reflectors and resistance against dynamic effects. We investigated 1:5 models of the CRs and integrated benchmarks in an anechoic chamber to estimate the effects of truncation and the interference of the twin reflectors. The main effect of the interference is the asymmetric monostatic radar cross section, which can be neglected. The integrated benchmarks were also investigated in two recent landslide areas in Hungary using Sentinel-1 single look complex (SLC) scenes, which confirmed that the preliminary requirements can be met
Food Insecurity and Eating Disorders: A Review of Emerging Evidence
Purpose of Review: This review summarizes emerging evidence for the relationship between food insecurity and eating disorder (ED) pathology, outlines priorities for future research in this area, and comments on considerations for clinical and public health practice.
Recent Findings: Among adults, food insecurity is cross-sectionally associated with higher levels of overall ED pathology, binge eating, compensatory behaviors, binge-eating disorder, and bulimia nervosa. Evidence for similar relationships among adolescents has been less robust; however, compared to studies of adults, there have been substantially fewer studies conducted in adolescents to date.
Summary: Emerging evidence consistently indicates that food insecurity is cross-sectionally associated with bulimic-spectrum ED pathology among adults. Findings emphasize the need for ED research to include marginalized populations who have historically been overlooked in the ED field. Much more research is needed to better understand the relationship between food insecurity and ED pathology and to determine effective ways to intervene
Does Market Integration Buffer Risk, Erode Traditional Sharing Practices and Increase Inequality? a Test Among Bolivian Forager-Farmers
Sharing and exchange are common practices for minimizing food insecurity in rural populations. The advent of markets and monetization in egalitarian indigenous populations presents an alternative means of managing risk, with the potential impact of eroding traditional networks. We test whether market involvement buffers several types of risk and reduces traditional sharing behavior among Tsimane Amerindians of the Bolivian Amazon. Results vary based on type of market integration and scale of analysis (household vs. village), consistent with the notion that local culture and ecology shape risk management strategies. Greater wealth and income were unassociated with the reliance on others for food, or on reciprocity, but wealth was associated with a greater proportion of food given to others (i.e., giving intensity) and a greater number of sharing partners (i.e., sharing breadth). Across villages, greater mean income was negatively associated with reciprocity, but economic inequality was positively associated with giving intensity and sharing breadth. Incipient market integration does not necessarily replace traditional buffering strategies but instead can often enhance social capital
Predictions for the Cosmogenic Neutrino Flux in Light of New Data from the Pierre Auger Observatory
The Pierre Auger Observatory (PAO) has measured the spectrum and composition
of the ultrahigh energy cosmic rays with unprecedented precision. We use these
measurements to constrain their spectrum and composition as injected from their
sources and, in turn, use these results to estimate the spectrum of cosmogenic
neutrinos generated in their propagation through intergalactic space. We find
that the PAO measurements can be well fit if the injected cosmic rays consist
entirely of nuclei with masses in the intermediate (C, N, O) to heavy (Fe, Si)
range. A mixture of protons and heavier species is also acceptable but (on the
basis of existing hadronic interaction models) injection of pure light nuclei
(p, He) results in unacceptable fits to the new elongation rate data. The
expected spectrum of cosmogenic neutrinos can vary considerably, depending on
the precise spectrum and chemical composition injected from the cosmic ray
sources. In the models where heavy nuclei dominate the cosmic ray spectrum and
few dissociated protons exceed GZK energies, the cosmogenic neutrino flux can
be suppressed by up to two orders of magnitude relative to the all-proton
prediction, making its detection beyond the reach of current and planned
neutrino telescopes. Other models consistent with the data, however, are
proton-dominated with only a small (1-10%) admixture of heavy nuclei and
predict an associated cosmogenic flux within the reach of upcoming experiments.
Thus a detection or non-detection of cosmogenic neutrinos can assist in
discriminating between these possibilities.Comment: 10 pages, 7 figure
- …