6,298 research outputs found
Financial reporting by New Zealand charities: finding a way forward
Purpose â Charities are becoming recognised as playing an important part in communities by furthering governmentâs social objectives through increasing support to disadvantaged members of society. As charities multiply in number, it becomes increasingly difficult for fund providers and contributors to determine which charity to support. In New Zealand there is a move towards providing public access to the financial accounts of charities to assist stakeholders in their decision making and to enhance transparency in charities. However, this assumes that these financial accounts are understandable by all stakeholders. This paper aims to identify four problems that limit the way forward for financial reporting by New Zealand charities.
Design/methodology/approach â The first section of the paper comprises a review of the literature on charitiesâ financial accounts with a particular focus on the four problems identified above. The paper then reports the results of eight interviews with charitable organisations, auditors and academics that have expertise in charity financial reporting, with a particular emphasis on the four identified problems.
Findings â There was agreement that unresolved, these four problems could limit the way forward in financial reporting by New Zealand charities. Some recommendations are proposed that suggest a way forward with regard to these problems, so that the users of the financial reports of charities may benefit.
Research limitations/implications â Highlights a need for further research into these problems to identify the feasibility of the proposed recommendations.
Originality/value â The enactment of the Charities Act 2005 in New Zealand and its requirement to include financial accounts on a publicly available register has raised the profile of the financial reports of charities. However, there has been limited research into the financial reporting by New Zealand charities, so this paper is a timely evaluation of four specific problems that could limit the way forward of financial reporting by New Zealand charities
Retrieval of atmospheric static stability from MST radar return signal power
International audienceAn empirical technique for retrieving profiles of the square of the Brunt-VÀisÀlÀ frequency, ?B2, from MST radar return signal power is presented. The validity of the technique, which is applied over the altitude range 1.0-15.7km, is limited to those altitudes at which the humidity contributions to the mean vertical gradient of generalised potential refractive index, M, can be ignored. Although this is commonly assumed to be the case above the first few kilometres of the atmosphere, it is shown that humidity contributions can be significant right up to the tropopause level. In specific circumstances, however, the technique is valid over large sections of the troposphere. Comparisons of radar- and (balloon-borne) radiosonde-derived ?B2 profiles are typically quantitatively and qualitatively well matched. However, the horizontal separation between the radar and the radiosondes (which were launched at the radar site) increases with increasing altitude. Under conditions of mountain wave activity, which can be highly localised, large discrepancies can occur at lower-stratospheric altitudes. This demonstrates the fact that radiosonde observations cannot necessarily be assumed to be representative of the atmosphere above the launch site
Inhomogeneity in the Supernova Remnant Distribution as the Origin of the PAMELA Anomaly
Recent measurements of the positron/electron ratio in the cosmic ray (CR)
flux exhibits an apparent anomaly, whereby this ratio increases between 10 and
100 GeV. We show that inhomogeneity of CR sources on a scale of order a kpc,
can naturally explain this anomaly. If the nearest major CR source is about a
kpc away, then low energy electrons ( GeV) can easily reach us. At
higher energies ( GeV), the source electrons cool via synchrotron
and inverse-Compton before reaching Earth. Pairs formed in the local vicinity
through the proton/ISM interactions can reach Earth also at high energies, thus
increasing the positron/electron ratio. A natural origin of source
inhomogeneity is the strong concentration of supernovae in the galactic spiral
arms. Assuming supernova remnants (SNRs) as the sole primary source of CRs, and
taking into account their concentration near the galactic spiral arms, we
consistently recover the observed positron fraction between 1 and 100 GeV.
ATIC's electron excess at GeV is explained, in this picture, as the
contribution of a few known nearby SNRs. The apparent coincident similarity
between the cooling time of electrons at 10 GeV (where the positron/electron
ratio upturn), Myr, and the CRs protons cosmogenic age at the same
energy is predicted by this model
The Indirect Search for Dark Matter with IceCube
We revisit the prospects for IceCube and similar kilometer-scale telescopes
to detect neutrinos produced by the annihilation of weakly interacting massive
dark matter particles (WIMPs) in the Sun. We emphasize that the astrophysics of
the problem is understood; models can be observed or, alternatively, ruled out.
In searching for a WIMP with spin-independent interactions with ordinary
matter, IceCube is only competitive with direct detection experiments if the
WIMP mass is sufficiently large. For spin-dependent interactions IceCube
already has improved the best limits on spin-dependent WIMP cross sections by
two orders of magnitude. This is largely due to the fact that models with
significant spin-dependent couplings to protons are the least constrained and,
at the same time, the most promising because of the efficient capture of WIMPs
in the Sun. We identify models where dark matter particles are beyond the reach
of any planned direct detection experiments while being within reach of
neutrino telescopes. In summary, we find that, even when contemplating recent
direct detection results, neutrino telescopes have the opportunity to play an
important as well as complementary role in the search for particle dark matter.Comment: 17 pages, 10 figures, published in the New Journal of Physics 11
105019 http://www.iop.org/EJ/abstract/1367-2630/11/10/105019, new version
submitted to correct Abstract in origina
Radiative corrections to the lightest KK states in the T^2/(Z_2\times Z_2') orbifold
We study radiative corrections localized in the fixed points of the orbifold
for the field theory in six dimensions with two dimensions compactified on the
orbifold in a specific realistic model for low energy
physics that solves the proton decay and neutrino mass problem. We calculate
corrections to the masses of the lightest stable KK modes, which could be the
candidates for the dark matter.Comment: 14 pages, 2 figure
Kaluza-Klein Dark Matter, Electrons and Gamma Ray Telescopes
Kaluza-Klein dark matter particles can annihilate efficiently into
electron-positron pairs, providing a discrete feature (a sharp edge) in the
cosmic spectrum at an energy equal to the particle's mass (typically
several hundred GeV to one TeV). Although this feature is probably beyond the
reach of satellite or balloon-based cosmic ray experiments (those that
distinguish the charge and mass of the primary particle), gamma ray telescopes
may provide an alternative detection method. Designed to observe very
high-energy gamma-rays, ACTs also observe the diffuse flux of electron-induced
electromagnetic showers. The GLAST satellite, designed for gamma ray astronomy,
will also observe any high energy showers (several hundred GeV and above) in
its calorimeter. We show that high-significance detections of an
electron-positron feature from Kaluza-Klein dark matter annihilations are
possible with GLAST, and also with ACTs such as HESS, VERITAS or MAGIC.Comment: 10 pages, 2 figure
Spinless photon dark matter from two universal extra dimensions
We explore the properties of dark matter in theories with two universal extra
dimensions, where the lightest Kaluza-Klein state is a spin-0 neutral particle,
representing a six-dimensional photon polarized along the extra dimensions.
Annihilation of this 'spinless photon' proceeds predominantly through Higgs
boson exchange, and is largely independent of other Kaluza-Klein particles. The
measured relic abundance sets an upper limit on the spinless photon mass of 500
GeV, which decreases to almost 200 GeV if the Higgs boson is light. The
phenomenology of this dark matter candidate is strikingly different from
Kaluza-Klein dark matter in theories with one universal extra dimension.
Elastic scattering of the spinless photon with quarks is helicity suppressed,
making its direct detection challenging, although possible at upcoming
experiments. The prospects for indirect detection with gamma rays and
antimatter are similar to those of neutralinos. The rates predicted at neutrino
telescopes are below the sensitivity of next-generation experiments.Comment: 22 pages. Figure 7 corrected, leading to improved prospects for
direct detection. Some clarifying remarks include
The Far-infrared Continuum of Quasars
ISO provides a key new far-infrared window through which to observe the
multi-wavelength spectral energy distributions (SEDs) of quasars and active
galactic nuclei (AGN). It allows us, for the first time, to observe a
substantial fraction of the quasar population in the far-IR, and to obtain
simultaneous, multi-wavelength observations from 5--200 microns. With these
data we can study the behavior of the IR continuum in comparison with
expectations from competing thermal and non-thermal models. A key to
determining which mechanism dominates, is the measurement of the peak
wavelength of the emission and the shape of the far-IR--mm turnover. Turnovers
which are steeper than frequency^2.5 indicate thermal dust emission in the
far-IR.
Preliminary results from our ISO data show broad, fairly smooth, IR continuum
emission with far-IR turnovers generally too steep to be explained by
non-thermal synchrotron emission. Assuming thermal emission throughout leads to
a wide inferred temperature range of 50-1000 K. The hotter material, often
called the AGN component, probably originates in dust close to and heated by
the central source, e.g. the ubiquitous molecular torus. The cooler emission is
too strong to be due purely to cool, host galaxy dust, and so indicates either
the presence of a starburst in addition to the AGN or AGN-heated dust covering
a wider range of temperatures than present in the standard, optically thick
torus models.Comment: 4 pages, to be published in the proceedings of "The Universe as Seen
by ISO," ed. M. Kessler. This and related papers can be found at
http://hea-www.harvard.edu/~ehooper/ISOkp/ISOkp.htm
Infrared Properties of High Redshift and X-ray Selected AGN Samples
The NASA/ISO Key Project on active galactic nuclei (AGN) seeks to better
understand the broad-band spectral energy distributions (SEDs) of these sources
from radio to X-rays, with particular emphasis on infrared properties. The ISO
sample includes a wide variety of AGN types and spans a large redshift range.
Two subsamples are considered herein: 8 high-redshift (1 < z < 4.7) quasars;
and 22 hard X-ray selected sources.
The X-ray selected AGN show a wide range of IR continuum shapes, extending to
cooler colors than the optical/radio sample of Elvis et al. (1994). Where a
far-IR turnover is clearly observed, the slopes are < 2.5 in all but one case
so that non-thermal emission remains a possibility. The highest redshift
quasars show extremely strong, hot IR continua requiring ~ 100 solar masses of
500 - 1000 Kelvin dust with ~ 100 times weaker optical emission. Possible
explanations for these unusual properties include: reflection of the optical
light from material above/below a torus; strong obscuration of the optical
continuum; or an intrinsic deficit of optical emission.Comment: 8 pages, 3 figures (2 color), to be published in the Springer Lecture
Notes of Physics Series as part of the proceedings for "ISO Surveys of a
Dusty Universe," a workshop held at Ringberg Castle, Germany, November 8 -
12, 1999. Requires latex style files for this series: cl2emult.cls,
cropmark.sty, lnp.sty, sprmindx.sty, subeqnar.sty (included with submission
The Chandra X-ray Observatory Resolves the X-ray Morphology and Spectra of a Jet in PKS 0637-752
The core-dominated radio-loud quasar PKS 0637-752 (z = 0.654) was the first
celestial object observed with the Chandra X-ray Observatory, offering the
early surprise of the detection of a remarkable X-ray jet. Several observations
with a variety of detector configurations contribute to a total exposure time
with the Chandra Advanced CCD Imaging Spectrometer (ACIS; Garmire et al. 2000,
in preparation) of about 100ks. A spatial analysis of all the available X-ray
data, making use of Chandra's spatial resolving power of about 0.4 arcsec,
reveals a jet that extends about 10 arcsec to the west of the nucleus. At least
four X-ray knots are resolved along the jet, which contains about 5% of the
overall X-ray luminosity of the source. Previous observations of PKS 0637-752
in the radio band (Tingay et al. 1998) had identified a kpc-scale radio jet
extending to the West of the quasar. The X-ray and radio jets are similar in
shape, intensity distribution, and angular structure out to about 9 arcsec,
after which the X-ray brightness decreases more rapidly and the radio jet turns
abruptly to the north. The X-ray luminosity of the total source is log Lx ~
45.8 erg/s (2 - 10keV), and appears not to have changed since it was observed
with ASCA in November 1996. We present the results of fitting a variety of
emission models to the observed spectral distribution, comment on the
non-existence of emission lines recently reported in the ASCA observations of
PKS 0637-752, and briefly discuss plausible X-ray emission mechanisms.Comment: 24 pages, includes 8 figures, Accepted for publication in Ap
- âŠ