75 research outputs found

    Hyperinsulinemia improves ischemic LV function in insulin resistant subjects.

    Get PDF
    BACKGROUND: Glucose is a more efficient substrate for ATP production than free fatty acid (FFA). Insulin resistance (IR) results in higher FFA concentrations and impaired myocardial glucose use, potentially worsening ischemia. We hypothesized that metabolic manipulation with a hyperinsulinemic euglycemic clamp (HEC) would affect a greater improvement in left ventricular (LV) performance during dobutamine stress echo (DSE) in subjects with IR. METHODS: 24 subjects with normal LV function and coronary disease (CAD) awaiting revascularization underwent 2 DSEs. Prior to one DSEs they underwent an HEC, where a primed infusion of insulin (rate 43 mU/m 2/min) was co-administered with 20% dextrose at variable rates to maintain euglycemia. At steady-state the DSE was performed and images of the LV were acquired with tissue Doppler at each stage for offline analysis. Segmental peak systolic velocities (Vs) were recorded, as well as LV ejection fraction (EF). Subjects were then divided into two groups based on their insulin sensitivity during the HEC. RESULTS: HEC changed the metabolic environment, suppressing FFAs and thereby increasing glucose use. This resulted in improved LV performance at peak stress, measured by EF (IS group mean difference 5.3 (95% CI 2.5-8) %, p = 0.002; IR group mean difference 8.7 (95% CI 5.8-11.6) %, p < 0.0001) and peak V s in ischemic segments (IS group mean improvement 0.7(95% CI 0.07-1.58) cm/s, p = 0.07; IR group mean improvement 1.0 (95% CI 0.54-1.5) cm/s, p < 0.0001) , that was greater in the subjects with IR. CONCLUSIONS: Increased myocardial glucose use induced by HEC improves LV function under stress in subjects with CAD and IR. Cardiac metabolic manipulation in subjects with IR is a promising target for future therapy.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Balloon Pulmonary Angioplasty: State of the Art

    Get PDF
    Balloon pulmonary angioplasty (BPA) is a novel technique for the treatment of chronic thromboembolic pulmonary hypertension. While cardiologists need no introduction to the concept of balloon angioplasty, BPA has its own particular challenges. This article aims to provide the reader with an overview of BPA, starting with an introduction to chronic thromboembolic disease (CTED), the standard management of chronic thromboembolic pulmonary hypertension (CTEPH), technical challenges faced when performing BPA and the evidence base supporting its use. The second part of the article will focus on the future of BPA, in particular the areas where research is required to establish an evidence base to justify the role of BPA in CTEPH and CTED treatment

    Glucagon-like peptide-1 protects against ischemic left ventricular dysfunction during hyperglycemia in patients with coronary artery disease and type 2 diabetes mellitus.

    Get PDF
    BACKGROUND: Enhancement of myocardial glucose uptake may reduce fatty acid oxidation and improve tolerance to ischemia. Hyperglycemia, in association with hyperinsulinemia, stimulates this metabolic change but may have deleterious effects on left ventricular (LV) function. The incretin hormone, glucagon-like peptide-1 (GLP-1), also has favorable cardiovascular effects, and has emerged as an alternative method of altering myocardial substrate utilization. In patients with coronary artery disease (CAD), we investigated: (1) the effect of a hyperinsulinemic hyperglycemic clamp (HHC) on myocardial performance during dobutamine stress echocardiography (DSE), and (2) whether an infusion of GLP-1(7-36) at the time of HHC protects against ischemic LV dysfunction during DSE in patients with type 2 diabetes mellitus (T2DM). METHODS: In study 1, twelve patients underwent two DSEs with tissue Doppler imaging (TDI)-one during the steady-state phase of a HHC. In study 2, ten patients with T2DM underwent two DSEs with TDI during the steady-state phase of a HHC. GLP-1(7-36) was infused intravenously at 1.2 pmol/kg/min during one of the scans. In both studies, global LV function was assessed by ejection fraction and mitral annular systolic velocity, and regional wall LV function was assessed using peak systolic velocity, strain and strain rate from 12 paired non-apical segments. RESULTS: In study 1, the HHC (compared with control) increased glucose (13.0 ± 1.9 versus 4.8 ± 0.5 mmol/l, p < 0.0001) and insulin (1,212 ± 514 versus 114 ± 47 pmol/l, p = 0.01) concentrations, and reduced FFA levels (249 ± 175 versus 1,001 ± 333 μmol/l, p < 0.0001), but had no net effect on either global or regional LV function. In study 2, GLP-1 enhanced both global (ejection fraction, 77.5 ± 5.0 versus 71.3 ± 4.3%, p = 0.004) and regional (peak systolic strain -18.1 ± 6.6 versus -15.5 ± 5.4%, p < 0.0001) myocardial performance at peak stress and at 30 min recovery. These effects were predominantly driven by a reduction in contractile dysfunction in regions subject to demand ischemia. CONCLUSIONS: In patients with CAD, hyperinsulinemic hyperglycemia has a neutral effect on LV function during DSE. However, GLP-1 at the time of hyperglycemia improves myocardial tolerance to demand ischemia in patients with T2DM. TRIAL REGISTRATION: http://www.isrctn.org . Unique identifier ISRCTN69686930

    Stunning and Cumulative Left Ventricular Dysfunction Occurs Late After Coronary Balloon Occlusion in Humans Insights From Simultaneous Coronary and Left Ventricular Hemodynamic Assessment

    Get PDF
    ObjectivesWe aimed to investigate whether left ventricular (LV) stunning could be detected late after coronary occlusion when coronary flow has normalized.BackgroundStunning and cumulative LV dysfunction after ischemia reperfusion has been clearly demonstrated in animal models but has been refuted in several angioplasty models in humans. However, these studies have assessed LV function early, during the reactive hyperemic phase, which might have augmented LV function.MethodsWe recruited 20 male subjects with single-vessel, type A coronary disease, and normal ventricular function. We simultaneously measured LV function with a conductance catheter and coronary flow velocity with a Combowire (Volcano Therapeutics, Inc., Rancho Cordova, California) at baseline (BL), for 30 s after a low-pressure coronary balloon occlusion for 1 min and again after 30 min, before a second balloon occlusion.ResultsStunning was detected at 30 min after a 1-min balloon occlusion: stroke volume (ml) BL1: 88.4 (22.8) versus BL2: 79.4 (24.0), p = 0.04; τ (ms) BL1: 49.8 (9.0) versus BL2: 52.5 (8.9), p = 0.02, despite full recovery of coronary average peak velocity (p = 0.62). A second balloon occlusion caused cumulative LV dysfunction: stroke volume (ml) BO1: 77.3 (34.6) versus BO2 64.9 (22.9), p = 0.01. Reactive hyperemia significantly augmented early recovery systolic function: dP/dt max 30 s: +5.8% versus 30 min − 5.4%, p = 0.0009.ConclusionsCoronary occlusion for 1-min results in late stunning and cumulative LV dysfunction after 30 min. Reactive hyperemia augments stunned LV systolic function in early recovery

    Stunning and Right Ventricular Dysfunction Is Induced by Coronary Balloon Occlusion and Rapid Pacing in Humans: Insights From Right Ventricular Conductance Catheter Studies

    Get PDF
    BACKGROUND: We sought to determine whether right ventricular stunning could be detected after supply (during coronary balloon occlusion [BO]) and supply/demand ischemia (induced by rapid pacing [RP] during transcatheter aortic valve replacement) in humans. METHODS AND RESULTS: Ten subjects with single-vessel right coronary artery disease undergoing percutaneous coronary intervention with normal ventricular function were studied in the BO group. Ten subjects undergoing transfemoral transcatheter aortic valve replacement were studied in the RP group. In both, a conductance catheter was placed into the right ventricle, and pressure volume loops were recorded at baseline and for intervals over 15 minutes after a low-pressure BO for 1 minute or a cumulative duration of RP for up to 1 minute. Ischemia-induced diastolic dysfunction was seen 1 minute after RP (end-diastolic pressure [mm Hg]: 8.1±4.2 versus 12.1±4.1, P<0.001) and BO (end-diastolic pressure [mm Hg]: 8.1±4.0 versus 8.7±4.0, P=0.03). Impairment of systolic and diastolic function after BO remained at 15-minutes recovery (ejection fraction [%]: 55.7±9.0 versus 47.8±6.3, P<0.01; end-diastolic pressure [mm Hg]: 8.1±4.0 versus 9.2±3.9, P<0.01). Persistent diastolic dysfunction was also evident in the RP group at 15-minutes recovery (end-diastolic pressure [mm Hg]: 8.1±4.1 versus 9.9±4.4, P=0.03) and there was also sustained impairment of load-independent indices of systolic function at 15 minutes after RP (end-systolic elastance and ventriculo-arterial coupling [mm Hg/mL]: 1.25±0.31 versus 0.85±0.43, P<0.01). CONCLUSIONS: RP and right coronary artery balloon occlusion both cause ischemic right ventricular dysfunction with stunning observed later during the procedure. This may have intraoperative implications in patients without right ventricular functional reserve

    Glucagon-like peptide-1 derived cardioprotection does not utilize a KATP-channel dependent pathway: mechanistic insights from human supply and demand ischemia studies.

    Get PDF
    BACKGROUND: Glucagon-like peptide-1 (7-36) amide (GLP-1) protects against stunning and cumulative left ventricular dysfunction in humans. The mechanism remains uncertain but GLP-1 may act by opening mitochondrial K-ATP channels in a similar fashion to ischemic conditioning. We investigated whether blockade of K-ATP channels with glibenclamide abrogated the protective effect of GLP-1 in humans. METHODS: Thirty-two non-diabetic patients awaiting stenting of the left anterior descending artery (LAD) were allocated into 4 groups (control, glibenclamide, GLP-1, and GLP-1 + glibenclamide). Glibenclamide was given orally prior to the procedure. A left ventricular conductance catheter recorded pressure-volume loops during a 1-min low-pressure balloon occlusion (BO1) of the LAD. GLP-1 or saline was then infused for 30-min followed by a further 1-min balloon occlusion (BO2). In a non-invasive study, 10 non-diabetic patients were randomized to receive two dobutamine stress echocardiograms (DSE) during GLP-1 infusion with or without oral glibenclamide pretreatment. RESULTS: GLP-1 prevented stunning even with glibenclamide pretreatment; the Δ % dP/dtmax 30-min post-BO1 normalized to baseline after GLP-1: 0.3 ± 6.8 % (p = 0.02) and GLP-1 + glibenclamide: -0.8 ± 9.0 % (p = 0.04) compared to control: -11.5 ± 10.0 %. GLP-1 also reduced cumulative stunning after BO2: -12.8 ± 10.5 % (p = 0.02) as did GLP-1 + glibenclamide: -14.9 ± 9.2 % (p = 0.02) compared to control: -25.7 ± 9.6 %. Glibenclamide alone was no different to control. Glibenclamide pretreatment did not affect global or regional systolic function after GLP-1 at peak DSE stress (EF 74.6 ± 6.4 vs. 74.0 ± 8.0, p = 0.76) or recovery (EF 61.9 ± 5.7 vs. 61.4 ± 5.6, p = 0.74). CONCLUSIONS: Glibenclamide pretreatment does not abrogate the protective effect of GLP-1 in human models of non-lethal myocardial ischemia. Trial registration Clinicaltrials.gov Unique Identifier: NCT02128022

    Ventriculo-arterial coupling detects occult RV dysfunction in chronic thromboembolic pulmonary vascular disease.

    Get PDF
    Chronic thromboembolic disease (CTED) is suboptimally defined by a mean pulmonary artery pressure (mPAP)  0.68 and Ees/Ea < 0.68 subgroups demonstrated constant RV stroke work but lower stroke volume (87.7 ± 22.1 vs. 60.1 ± 16.3 mL respectively, P = 0.006) and higher end-systolic pressure (36.7 ± 11.6 vs. 68.1 ± 16.7 mmHg respectively, P < 0.001). Lower Ees/Ea in CTED also correlated with reduced exercise ventilatory efficiency. Low Ees/Ea aligns with features of RV maladaptation in CTED both at rest and on exercise. Characterization of Ees/Ea in CTED may allow for better identification of occult RV dysfunction
    corecore