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tunning and Cumulative Left Ventricular
ysfunction Occurs Late After Coronary
alloon Occlusion in Humans

nsights From Simultaneous Coronary and Left Ventricular Hemodynamic Assessment

tephen P. Hoole, MA, DM,*‡ Patrick M. Heck, MA,*‡ Paul A. White, PHD,†‡
hilip A. Read, MA,*‡ Sadia N. Khan, MA,*‡ Nick E. J. West, MA, MD,‡
ichael O’Sullivan, MA, PHD,‡ David P. Dutka, MD*

ambridge, United Kingdom

bjectives We aimed to investigate whether left ventricular (LV) stunning could be detected late
fter coronary occlusion when coronary flow has normalized.

ackground Stunning and cumulative LV dysfunction after ischemia reperfusion has been clearly
emonstrated in animal models but has been refuted in several angioplasty models in humans.
owever, these studies have assessed LV function early, during the reactive hyperemic phase, which
ight have augmented LV function.

ethods We recruited 20 male subjects with single-vessel, type A coronary disease, and normal
entricular function. We simultaneously measured LV function with a conductance catheter and cor-
nary flow velocity with a Combowire (Volcano Therapeutics, Inc., Rancho Cordova, California) at
aseline (BL), for 30 s after a low-pressure coronary balloon occlusion for 1 min and again after 30
in, before a second balloon occlusion.

esults Stunning was detected at 30 min after a 1-min balloon occlusion: stroke volume (ml) BL1:
8.4 (22.8) versus BL2: 79.4 (24.0), p � 0.04; � (ms) BL1: 49.8 (9.0) versus BL2: 52.5 (8.9), p � 0.02,
espite full recovery of coronary average peak velocity (p � 0.62). A second balloon occlusion
aused cumulative LV dysfunction: stroke volume (ml) BO1: 77.3 (34.6) versus BO2 64.9 (22.9), p �

.01. Reactive hyperemia significantly augmented early recovery systolic function: dP/dt max 30 s:
5.8% versus 30 min � 5.4%, p � 0.0009.

onclusions Coronary occlusion for 1-min results in late stunning and cumulative LV dysfunction
fter 30 min. Reactive hyperemia augments stunned LV systolic function in early recovery. (J Am
oll Cardiol Intv 2010;3:412–8) © 2010 by the American College of Cardiology Foundation

rom the Departments of *Cardiovascular Medicine and †Medical Physics and Clinical Engineering, Addenbrooke’s Hospital,
ambridge, United Kingdom; and the ‡Department of Cardiology, Papworth Hospital, Cambridge, United Kingdom. This work
as supported by the British Heart Foundation and the National Institute for Health Research Cambridge Biomedical Research
entre. Dr. Hoole was also supported by a Clinical Cardiology Fellowship sponsored by Cordis.
anuscript received October 1, 2009; revised manuscript received December 15, 2009, accepted December 23, 2009.

https://core.ac.uk/display/82023286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


M
t
n
h
r
o
r
a
r
S
r
(
h
s
s
a
i
s
m

3
n
c
L
L
g
t
a

M

S
t
d
c
p
w
H
a
s
t
C
d
w
p
b
a
a
s

s
a
i
a

0
s
P
i
c
n
f
a
l
(
S
f
i
c
b
a
a

l
g
1
N
L

T
n
s
t
r
d
g
l
w
i
a
v
i

p
a
2
e
m
s
t
t
r
v
d
p
o
w
e

J A C C : C A R D I O V A S C U L A R I N T E R V E N T I O N S , V O L . 3 , N O . 4 , 2 0 1 0 Hoole et al.

A P R I L 2 0 1 0 : 4 1 2 – 8 Late Stunning After Coronary Occlusion in Humans

413
yocardial stunning is post-ischemic myocardial dysfunc-
ion in the absence of infarction, despite restoration of
ormal flow, and is completely reversible (1,2). Stunning
as been described in animal models of supply ischemia–
eperfusion and is proportional to the degree and duration
f ischemic insult (3,4). Repeat episodes of ischemia–
eperfusion have also been shown to lead to more prolonged
nd severe left ventricular (LV) dysfunction that remains
eversible—a phenomenon termed cumulative stunning (5).
imilarly, cumulative stunning has been described during
epeat episodes of demand ischemia in animals and humans
6–9). However, stunning caused by supply ischemia in
umans has not been clearly demonstrated, and cumulative
tunning and LV dysfunction are thought not to occur after
erial 1-min coronary balloon occlusions (10–12). However,
ssessment of LV function in these studies was made early
n recovery during the reactive hyperemic phase of reperfu-
ion. It is possible that a hyperemia-induced inotropic effect
ight have confounded the detection of stunning.
We hypothesized that late assessment of LV function at

0 min after balloon occlusion, when coronary flow is
ormal, would detect stunning and that repeating a 1-min
oronary occlusion in late recovery would induce cumulative
V dysfunction. We simultaneously assessed coronary and
V hemodynamic status with a pressure-flow velocity
uidewire and intracavity conductance catheter, respectively,
o assess late stunning in humans during elective coronary
ngioplasty.

ethods

ubjects and study design. Twenty consecutive male pa-
ients (mean age 58 years [range 38 to 80]; with left anterior
escending [n � 17], left circumflex [n � 2], and right
oronary artery [n � 1] coronary disease) awaiting elective
ercutaneous coronary intervention (PCI) to a single vessel
ith a proximal American College of Cardiology/American
eart Association type-A stenosis and normal LV function

ssessed by angiography were recruited. Patients underwent
imultaneous conductance catheter assessment of LV func-
ion and Combowire (Volcano Therapeutics, Inc., Rancho
ordova, California) assessment of coronary flow velocity
uring a 1-min low-pressure (�4 atms) coronary occlusion
ith a compliant balloon. These measurements were re-
eated after a 30-min interval, during a second 1-min
alloon occlusion. Left ventricular pressure-volume loops
nd intracoronary instantaneous peak velocity were recorded
t baseline, during the 1-min low-pressure coronary occlu-
ion, and at 10-s intervals after coronary balloon deflation.

Patients were excluded if they had diabetes mellitus,
uffered a myocardial infarction in the preceding 3 months,
nd were not in sinus rhythm. All patients gave written
nformed consent before study inclusion. The study was

pproved by the Local Research Ethics Committee (LREC s
6/Q0106/52) and conformed to the Declaration of Hel-
inki. The trial number was ISRCTN42864201.
re-study protocol. Variables that could alter coronary phys-

ology were minimized. Patients were asked to abstain from
affeine, alcohol, nicotine, and oral/sublingual nitrates and
icorandil for a 24-h period before their procedure. All subjects
asted for 6 h and received aspirin 300 mg, clopidogrel 300 mg,
nd diazepam 5 mg at least 6 h before PCI. The catheter
aboratory was maintained at a constant ambient temperature
21°C � 0.5°C), and noise was kept to a minimum.
tudy protocol. CARDIAC CATHETERIZATION. Bilateral
emoral arterial (7-F and 8-F) and venous (6-F) sheaths were
nserted. A PCI was performed with 6-F or 7-F guiding
atheters. All patients were anti-coagulated with a heparin
olus (70 to 100 U/kg) after arterial sheath insertion to achieve
n activated coagulation time �250 s. No hemodynamic
ltering medication was administered during the procedure.

Angiographic stenosis severity was assessed before each
ow-pressure balloon occlusion by quantitative coronary an-
iography (Cardiac Viewer CV-
000, version 2.1.0, Liverpool,
ew York).

V HEMODYNAMIC CALIBRATION.

he conductance catheter tech-
ique has previously been de-
cribed in detail by Baan et al. (13)
o determine LV pressure-volume
elations. A 7-F, 8-electrode con-
uctance catheter with an inte-
rated micromanometer tip (Mil-
ar Instruments, Houston, Texas)
as advanced via a femoral sheath

nto the LV apex. It was placed
long the longitudinal axis of the
entricle to minimize motion dur-
ng the cardiac cycle.

The catheter was connected to a signal conditioning and
rocessing unit (CD Leycom, Zoetermeer, the Netherlands),
nd signals were acquired with custom software at 250 Hz. A
0-kHz, 30-pA current was applied to the distal and proximal
lectrodes, and the remaining 6 electrodes were used to
easure a time-varying ventricular conductance, G(t), as the

um of the intervening 5 segments. The relationship between
he time-varying volume, V(t), and the time-varying conduc-
ance, G(t), is given by the formula: V(t) � 1/� � L2 �
[G(t) � G(p)]; � is the ratio of the conductance-derived
olume to true ventricular volume, L is the inter-electrode
istance, r is the resistivity of blood in �/cm, and G(p) is the
arallel conductance due to the conductance of structures
utside the ventricular blood pool. Volume correction for G(p)
as calculated from the formula: Vc � 1/� � L2 � r(Gp)

stimated by the hypertonic saline injection technique de-

Abbreviations
and Acronyms

APV � average peak velocity

BL1 � measurements at
baseline 1

BO1 � measurements at
balloon occlusion 1

BL2 � measurements after
30 min at baseline 2

BO2 � measurements at
balloon occlusion 2

LV � left ventricular

PCI � percutaneous
coronary intervention
cribed by Baan et al (13). The slope
 coefficient, �, calculated
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o correct for inhomogeneity of the electric field, was deter-
ined by an average Fick cardiac output, measured 3 times.

V HEMODYNAMIC MEASUREMENTS. Conductance catheter
ata were analyzed offline with PVAN software (Millar In-

Figure 1. Conductance Catheter in LV Cavity and Doppler Wire in LAD

Cranial right anterior oblique fluoroscopic views of a Millar conductance cathe
the mid left anterior descending coronary artery (LAD) at baseline (A) and dur

volume relations at baseline and during balloon occlusion are plotted. ECG � electr
truments). Five cardiac cycles at baseline, after 1-min balloon
cclusion (just before balloon deflation) and at 10-s intervals in
ecovery were recorded (Fig. 1). Mean index of diastolic
unction (maximum rate of pressure decline: LV dP/dtmin and

the left ventricular (LV) cavity, and Volcano Doppler flow velocity wire tip in
w-pressure balloon occlusion of a proximal LAD stenosis (B). The pressure–
ter in
ing lo
ocardiogram.
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ime constant of LV isovolumic relaxation: LV �); systolic
unction (maximum rate of pressure generation: LV dP/dtmax);
nd LV end-diastolic pressure and volume, stroke volume, and
jection fraction were calculated at these time points.

The time constant of pressure relaxation (Pt), measured
rom the time of peak rate of pressure decline to 5 mm Hg
bove end-diastolic pressure is derived (14) and used to
alculate LV � (�): Pt � K e �t/�; � is the slope of the log Pt
ersus t relation (� � �1/slope, assuming P	 � 0).
ORONARY HEMODYNAMIC MEASUREMENTS. A Combo-
ire XT 9500 (Volcano Therapeutics, Inc.) 0.014-inch

uidewire with a Doppler flow velocity sensor at the tip
as used. The measurements were recorded digitally onto a
omboMap (Volcano Therapeutics, Inc.) console for offline

nalysis.
The tip of the wire was positioned 3 to 5 cm beyond the

tenosis, in a segment of vessel that was straight and free
rom side-branches. Rotation of the wire, to ensure that the
ip was in the center of the vessel, optimized the velocity
ignals. The wire tip position was fluoroscopically stored to
nsure that successive measurements were made with the
ire tip in the same vessel location.
Measurement of intracoronary flow velocity was acquired

t baseline (BL1), during a low-pressure balloon occlusion
t �4 atms for 1-min duration (BO1) and at 10-s intervals
n early recovery. Coronary occlusion was confirmed by
ontrast injection during balloon inflation. After 30 min,
easurements were repeated at baseline (BL2) and during a

econd low-pressure balloon occlusion for 1-min (BO2). An
verage of 5 beats was used to calculate average peak velocity
APV), at baseline, just before balloon deflation and in early
ecovery.
ost-study protocol. Once the study measurements were
omplete, lesions were treated by high-pressure balloon
ngioplasty and coronary stenting. Angiographic success
as defined as a residual stenosis of �15% and Thrombol-
sis In Myocardial Infarction flow grade 3 in the target
essel. Cardiac troponin-I was analyzed at 12 to 24 h after
rocedure (Bayer ADVIA IMS Troponin-I Ultra method,
everkusen, Germany).
tatistical analysis. Data are expressed as mean � SD unless
therwise stated. Left ventricular hemodynamic data after
alloon occlusion were converted to a percentage change
rom baseline values to facilitate data comparison. Compar-
sons between data were made with the paired Student t
est. No adjustments for multiple comparisons were made.

probability level of p � 0.05 was considered significant.
ll calculations were done with SPSS for Windows, version
4 (SPSS, Inc., Chicago, Illinois).

esults

atient demographic data are summarized in Table 1. All

atients recruited had stable angina (Canadian Cardiovas- 1
ular Society score �2) with evidence of ischemia on
unctional testing. Serial low-pressure balloon inflations did
ot alter the coronary stenosis severity measured by quan-
itative coronary angiography (82.9% vs. 81.8%, p � 0.63),
nd this was confirmed by a constant APV at each baseline
eading (15.5 vs. 15.4 cm/s, p � 0.62).

Analysis of serial baseline measurements of LV function
Fig. 2, Table 2) demonstrate that 30 min after a 1-min
oronary balloon occlusion the ventricle had not recovered,
espite normalization of coronary flow velocity. This is
onsistent with LV stunning. A second coronary balloon
cclusion for 1 min resulted in a further deterioration in LV
unction � cumulative LV dysfunction.

Comparison of LV function during early recovery (30 s
fter balloon deflation) with late recovery (30 min after
alloon deflation) demonstrated persistent LV diastolic
ysfunction (delta �: early �5.0% vs. late �6.0%, p � 0.66).
owever, systolic function reached supra-baseline levels at

0 s into recovery that subsequently deteriorated at 30 min
delta dP/dt max: early �5.8% vs. late �5.4%, p � 0.0009).
imultaneous analysis of coronary APV confirmed that
uring early recovery there was reactive hyperemia (APV
cm/s]: early: 31.1 [3.9] vs. late 15.4 [1.1], p � 0.0002)
Fig. 3). When the coronary flow velocity had returned to
aseline values at 30 min after balloon deflation, ventricular
tunning was observed.

iscussion

n this study of simultaneous LV and coronary hemody-
amic assessment during coronary occlusion in humans, we
ave demonstrated that stunning is apparent late after a

Table 1. Patient Demographic Data and Baseline Hemodynamic Status

Body mass index, kg/m2 29.3 (3.9)

Treated hypertension 8 (40)

LDLc, mmol/l 1.9 (0.6)

Current smoker 2 (10)

Medications

Aspirin 20 (100)

Clopidogrel 20 (100)

Statin 20 (100)

Beta-blocker 17 (85)

ACE inhibitor or ARB 14 (70)

Nitrates 9 (45)

Hemodynamic status

Systolic blood pressure, mm Hg 121 (18)

Diastolic blood pressure, mm Hg 66 (11)

Heart rate, beats/min 60 (11)

Stenosis severity, % 82.1 (11.3)

Values are n (%).

ACE � angiotensin-converting enzyme; ARB � angiotensin receptor blocker; LDLc � low-

density lipoprotein cholesterol.
-min coronary occlusion, when the hyperemic phase has
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ubsided. Cumulative LV dysfunction occurs after a second
oronary occlusion, 30 min after the first. These observa-
ions provide compelling evidence of stunning in humans
nd give insight into the interplay between coronary and
entricular hemodynamic status.

Figure 2. Serial Measurements at Baselines and Balloon Occlusions

Serial measurements at baseline 1 (BL1) and balloon occlusion 1 (BO1) and 30
ejection fraction (EF), time constant of isovolumic relaxation (�), and maximal r

Table 2. Comparison of Left Ventricular and Coronary Hemodynamic Measu

Baseline 1 Baseline 2

Heart rate, beats/min 57.3 (8.2) 55.6 (7.6)

MAP, mm Hg 89.3 (14.5) 88.7 (12.7)

LVEDP, mm Hg 14.1 (4.2) 14.3 (4.4)

LVEDV, ml 147.7 (37.0) 143.0 (36.3)

LVESV, ml 59.1 (15.8) 63.6 (20.6)

SV, ml 88.4 (22.8) 79.4 (24.0)

CO, l/min 4.99 (1.06) 4.76 (2.31)

EF, % 60.1 (4.4) 55.0 (8.9)

LV dP/dtmax, mm Hg/s�1 1,424 (329) 1,335 (317)

LV dP/dtmin, mm Hg/s�1 �1,878 (460) �1,868 (408)

LV �, ms 49.8 (9.0) 52.5 (8.9)

APV, cm/s�1 15.2 (5.2) 15.3 (5.3)

Comparison of left ventricular (LV) and coronary hemodynamic measurements recorded at baseline

also compared (mean [SD]).

APV � average peak velocity; CO � cardiac output; EF � ejection fraction; LVEDP � left ventricula
volume; MAP � mean arterial pressure; SV � stroke volume.
Acute myocardial ischemia impairs contractile function.
he dysfunction can persist for several hours after a tran-

ient nonlethal ischemic insult but will completely recover
3). This is termed myocardial stunning: contractile dys-
unction with normal flow in the absence of infarction,

ater at baseline 2 (BL2) and balloon occlusion 2 (BO2) for stroke volume (SV),
pressure increase (dP/dt max) (mean [SEM]).

nts

p Value BO1 BO2 p Value

0.07 60.3 (5.3) 62.2 (5.3) 0.52

0.53 88.4 (14.3) 87.3 (15.1) 0.80

0.76 18.6 (5.3) 18.1 (5.5) 0.47

0.09 142.5 (37.0) 139.1 (35.5) 0.17

0.17 63.6 (20.5) 74.2 (22.7) 0.03

0.04 77.3 (34.6) 64.9 (22.9) 0.01

0.61 4.68 (2.28) 4.49 (2.95) 0.76

0.01 54.0 (15.1) 46.3 (11.1) 0.02

0.03 1,265 (328) 1,194 (304) �0.05

0.83 �1,560 (449) �1,490 (416) 0.20

0.02 60.5 (11.1) 63.4 (13.1) �0.05

0.62 5.9 (2.9) 6.0 (3.4) 0.96

0 min later (after balloon occlusion 1) at baseline 2. Serial balloon occlusions 1 (BO1) and 2 (BO2) are

astolic pressure; LVEDV � left ventricular end-diastolic volume; LVESV � left ventricular end-systolic
min l
reme

1 and 3

r end-di



w
p
I
o

d
t
n
l
c

6
t
(
b
o
o
s
o
g

t
t
I
e
m
s
t
G
r
(
m

s
o
b
i
p
s
i
t
i
h
f
c
h
C
o
P
l
d
s
p
i
m
b
S
f

J A C C : C A R D I O V A S C U L A R I N T E R V E N T I O N S , V O L . 3 , N O . 4 , 2 0 1 0 Hoole et al.

A P R I L 2 0 1 0 : 4 1 2 – 8 Late Stunning After Coronary Occlusion in Humans

417
hich is completely reversible (1). The degree of stunning is
roportional to duration and severity of the ischemic insult.
n patients with coronary artery disease, repeated episodes

Figure 3. Comparison of APV, �, and dP/dt Max

Comparison of coronary average peak velocity (APV) (A), diastolic function
(time constant of isovolumic relaxation � �) (B), and systolic function (max-
imal rate of pressure increase � dP/dt max) (C), at baseline (BL), during
balloon occlusion (BO), and in early recovery (R) at 10-s intervals for 30 s.
Repeated measurements at baseline, during balloon occlusion, and recov-
ery were performed 30 min after the first (mean [SEM]). Abbreviations as in
Figure 2.
f demand ischemia (failure to adequately augment flow o
uring stress) can lead to cumulative stunning that might be
he substrate for chronic ischemic LV dysfunction (hiber-
ation) (8,15). However, the effect of stunning and cumu-

ative dysfunction has not been observed in a supply is-
hemia (reduction of flow) model in humans.

Several studies have assessed LV function during 30- to
0-s coronary balloon occlusions in humans and observed
hat ventricular function rapidly returned to baseline values
10–12). In addition, cumulative LV dysfunction after serial
alloon inflations performed in early reperfusion was not
bserved. Authors have surmised that coronary balloon
cclusion for 60 s is an insufficient ischemic insult to induce
tunning or cumulative LV dysfunction. However, in an-
ther study, prolonged LV diastolic dysfunction after an-
ioplasty in humans was observed (16).

An important limitation of several of these studies was
hat coronary blood flow was not assessed, and neither was
he effect of coronary flow on LV function accounted for.
mmediately after coronary balloon release, reactive hyper-
mia occurs to repay the oxygen debt (3). An increase in
icrovascular volume opens stretch-activated channels, re-

ulting in calcium influx and calcium-sensitive augmenta-
ion of cardiac myocyte contractility. This is known as the
regg or “garden-hose” effect (17). Stunned myocardium

etains the ability to mount a hyperemic inotropic response
18). This might mask early stunning within the first few
inutes of reperfusion.
In this published study we have clearly demonstrated that

tunning is observed after a single 1-min coronary balloon
cclusion, when assessed in late recovery, 30 min after
alloon occlusion, when coronary blood flow has normal-
zed. In addition, a second balloon occlusion during this
eriod results in cumulative LV dysfunction. Ventricular
ystolic contractility was augmented to above baseline values
n early recovery, during the hyperemic phase, possibly due
o the Gregg effect. However, we did not observe a similar
ncrease in lusitropy to above baseline values during the
yperemic phase in early recovery. The Salisbury or “scaf-
old” effect of the coronary arteries, whereby the external
oronary turgor increases ventricular stiffness (19,20), might
ave influenced LV diastolic recovery.
linical significance. The late ventricular stunning we have
bserved is clinically important, particularly because many
CI procedures involve balloon occlusion for substantially

onger than 60 s. During left main or proximal left anterior
escending PCI, large volumes of myocardium might be
tunned. This could precipitate clinically discernable
eriprocedural heart failure in patients with already-

mpaired LV function and low contractile reserve and might
andate additional hemodynamic support with intra-aortic

alloon pump in these patients.
tudy limitations. We were unable to confirm that LV
unction returned to baseline after the second balloon

cclusion with the conductance catheter, due to time and
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afety limitations. Full and complete reversibility is the
allmark of stunning. In addition, we cannot confirm that

ethal myocardial injury was absent after each low-pressure
alloon occlusion in all patients. Ten patients had PCI-
nduced myocardial injury (myocardial infarction 4a) (21)
hen troponin was measured at 12 to 24 h. However, we
elieve the majority of procedure-related embolic injury
ccurred during stent implantation (22). This assumption is
onfirmed by observing that the coronary flow velocity
eturned back to baseline after the first 1-min low-pressure
cclusion.

onclusions

oronary occlusion for 1 min results in late stunning and
umulative LV dysfunction during a second coronary occlu-
ion when performed after 30 min. Reactive hyperemia
ugments stunned LV systolic function in early recovery and
revents initial detection immediately after PCI.
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