24 research outputs found

    Community Characteristics of Sympatric Freshwater Turtles from Savannah Waterbodies in Ghana

    Get PDF
    Despite increasing pressures on freshwater resources worldwide, and the threatened status of most freshwater turtles, there is still limited knowledge of habitat use and niche partitioning in Afrotropical freshwater turtle communities. In this study, we describe habitat associations, community diversity, and temporal patterns of occurrence of freshwater turtle species in the Dahomey Gap ecoregion of Ghana (West Africa). We gathered data from 13 sites in central Ghana and along the Sene Arm of Lake Volta in the Digya National Park (Bono East Region). We employed opportunistic short-term surveys (at seven sites) together with longer-term (six-months duration) standardized evaluations of turtle presence and numbers in different habitats (at six sites). Overall, a total of 210 turtle individuals of four species (Trionyx triunguis, Cyclanorbis senegalensis, Pelomedusa sp. and Pelusios castaneus) were recorded; precise capture sites and habitat type were recorded for 139 individuals, but the 71 individuals observed in marketplaces were not considered in our analyses. At a local scale, we observed three sympatric species in various study sites. In each of these sites, the dominant species was either C. senegalensis or Pelomedusa sp., with the latter species being more abundant in temporary waterbodies and C. senegalensis more numerous in permanent ones. A Multiple Correspondence Analysis suggested that, in permanent waterbodies all species were associated with similar physical habitat variables. In a Canonical Correspondence Analysis, we showed that the density of herbaceous emergent vegetation was more important for P. castaneus than for C. senegalensis. Comparisons of diversity metrics between our study sites and previous studies revealed that turtle community composition was similar across savannah sites

    Chromosome evolution in Cophomantini (Amphibia, Anura, Hylinae)

    Get PDF
    The hylid tribe Cophomantini is a diverse clade of Neotropical treefrogs composed of the genera Aplastodiscus, Boana, Bokermannohyla, Hyloscirtus, and Myersiohyla. The phylogenetic relationships of Cophomantini have been comprehensively reviewed in the literature, providing a suitable framework for the study of chromosome evolution. Employing different banding techniques, we studied the chromosomes of 25 species of Boana and 3 of Hyloscirtus; thus providing, for the first time, data for Hyloscirtus and for 15 species of Boana. Most species showed karyotypes with 2n = 2x = 24 chromosomes; some species of the B. albopunctata group have 2n = 2x = 22, and H. alytolylax has 2n = 2x = 20. Karyotypes are all bi-armed in most species presented, with the exception of H. larinopygion (FN = 46) and H. alytolylax (FN = 38), with karyotypes that have a single pair of small telocentric chromosomes. In most species of Boana, NORs are observed in a single pair of chromosomes, mostly in the small chromosomes, although in some species of the B. albopunctata, B. pulchella, and B. semilineata groups, this marker occurs on the larger pairs 8, 1, and 7, respectively. In Hyloscirtus, NOR position differs in the three studied species: H. alytolylax (4p), H. palmeri (4q), and H. larinopygion (1p). Heterochromatin is a variable marker that could provide valuable evidence, but it would be necesserary to understand the molecular composition of the C-bands that are observed in different species in order to test its putative homology. In H. alytolylax, a centromeric DAPI+ band was observed on one homologue of chromosome pair 2. The band was present in males but absent in females, providing evidence for an XX/XY sex determining system in this species. We review and discuss the importance of the different chromosome markers (NOR position, C-bands, and DAPI/CMA3 patterns) for their impact on the taxonomy and karyotype evolution in Cophomantini

    A taxonomic bibliography of the South American snakes of the Crotalus durissus complex (Serpentes, Viperidae)

    Full text link

    Prey landscapes help identify potential foraging habitats for leatherback turtles in the NE Atlantic

    Get PDF
    Identifying key marine megavertebrate habitats has become ever more important as concern increases regarding global fisheries bycatch and accelerated climate change. This will be aided by a greater understanding of the patterns and processes determining the spatiotemporal distribution of species of conservation concern. We identify probable foraging grounds for leatherback turtles in the NE Atlantic using monthly landscapes of gelatinous organism distribution constructed from Continuous Plankton Recorder Survey data. Using sightings data (n = 2013 records, 1954 to 2003) from 9 countries (UK, Ireland, France, Belgium, The Netherlands, Denmark, Germany, Norway and Sweden), we show sea surface temperatures of approximately 10 to 12 degree C most likely indicate the lower thermal threshold for accessible habitats during seasonal foraging migrations to high latitudes. Integrating maps of gelatinous plankton as a possible indicator of prey distribution with thermal tolerance parameters demonstrates the dynamic (spatial and temporal) nature of NE Atlantic foraging habitats. We highlight the importance of body size- related thermal constraints in structuring leatherback foraging populations and demonstrate a latitudinal gradient in body size (Bergmann's rule) where smaller animals are excluded from higher latitude foraging areas. We highlight the marine area of the European continental shelf edge as being both thermally accessible and prey rich, and therefore potentially supporting appreciable densities of foraging leatherbacks, with some suitable areas not yet extensively surveyed

    The threadsnake tangle: lack of genetic divergence in Epictia tenella

    No full text
    The confusion between the Neotropical threadsnakes Epictia albifrons (Wagler) and Epictia tenella (Klauber) has been ongoing for decades. The lost holotype of Stenostoma albifrons, a poorly detailed original description, and dubious type locality confound the problem. Recently an extant series of nine museum specimen from Belém, state of Parå, Brazil were selected as topotypes for Epictia albifrons Wagler. From this series a neotype was designated. Here we compare the morphology of the neotype to specimens from Trinidad and Guyana, confirming that they are Epictia tenella (Klauber) not E. albifrons (Wagler). We also compare four mitochondrial and one nuclear marker from Trinidad and mainland (Guyana) Epictia tenella populations and find E. tenella relatively widespread with minimal genetic diversification between island and mainland specimens. Hypotheses that may explain the low divergence for this small, fossorial snake are explored and discussed: over-water rafting, human-mediated dispersal, and avian-mediated dispersal
    corecore