554 research outputs found

    Slide to the Left and Slide to the Right: Motor Coordination in Neurons

    Get PDF
    Molecular motors employ specific adaptor proteins to dock on transport cargos. Reporting in The Journal of Cell Biology, Fu and Holzbaur (2013) show that the adaptor JNK interacting protein 1 (JIP1) binds kinesin-1 and dynactin and controls bidirectional axonal amyloid precursor protein trafficking, suggesting a regulatory role for adaptors during cargo transport

    Basic mechanisms for recognition and transport of synaptic cargos

    Get PDF
    Synaptic cargo trafficking is essential for synapse formation, function and plasticity. In order to transport synaptic cargo, such as synaptic vesicle precursors, mitochondria, neurotransmitter receptors and signaling proteins to their site of action, neurons make use of molecular motor proteins. These motors operate on the microtubule and actin cytoskeleton and are highly regulated so that different cargos can be transported to distinct synaptic specializations at both pre- and post-synaptic sites. How synaptic cargos achieve specificity, directionality and timing of transport is a developing area of investigation. Recent studies demonstrate that the docking of motors to their cargos is a key control point. Moreover, precise spatial and temporal regulation of motor-cargo interactions is important for transport specificity and cargo recruitment. Local signaling pathways - Ca2+ influx, CaMKII signaling and Rab GTPase activity - regulate motor activity and cargo release at synaptic locations. We discuss here how different motors recognize their synaptic cargo and how motor-cargo interactions are regulated by neuronal activity

    Hormonal Regulation of AMPA Receptor Trafficking and Memory Formation

    Get PDF
    Humans and rodents retain memories for stressful events very well. The facilitated retention of these memories is normally very useful. However, in susceptible individuals a variety of pathological conditions may develop in which memories related to stressful events remain inappropriately present, such as in post-traumatic stress disorder. The memory enhancing effects of stress are mediated by hormones, such as norepinephrine and glucocorticoids which are released during stressful experiences. Here we review recently identified molecular mechanisms that underlie the effects of stress hormones on synaptic efficacy and learning and memory. We discuss AMPA receptors as major target for stress hormones and describe a model in which norepinephrine and glucocorticoids are able to strengthen and prolong different phases of stressful memories

    К вопросу об устойчивости сопряжений капитальных выработок глубоких шахт

    Get PDF
    Наведений аналіз стану сполучень протяжних виробок. Розглянуті умови підтримання похилих виробок та сполучень на шахті ім. В.М. Бажанова. Визначені розрахункові показники параметрів сполучень виробок. Наведені результати шахтних досліджень за станом сполучень капітальних похилих виробок шахти ім. В.М. Бажанова.The analysis of the state of pairings of the extended workings is resulted. The terms of maintenance of the sloping workings and pairings are considered on a mine the name of V.M. Bazhanova. The calculation indexes of parameters of pairings of workings are certain. The results of the mine researches are resulted after the state of pairings of the capital sloping workings of mine the name of V.M. Bazhanova

    Myosin-V Opposes Microtubule-Based Cargo Transport and Drives Directional Motility on Cortical Actin

    Get PDF
    SummaryIntracellular transport is driven by motor proteins that either use microtubules or actin filaments as their tracks [1], but the interplay between these transport pathways is poorly understood [2–4]. Whereas many microtubule-based motors are known to drive long-range transport, several actin-based motors have been proposed to function predominantly in cargo tethering [4–6]. How these opposing activities are integrated on cargoes that contain both types of motors is unknown. Here we use inducible intracellular transport assays to show that acute recruitment of myosin-V to kinesin-propelled cargo reduces their motility near the cell periphery and enhances their localization at the actin-rich cell cortex. Myosin-V arrests rapid microtubule-based transport without the need for regulated auto- or other inhibition of kinesin motors. In addition, myosin-V, despite being an ineffective long-range transporter, can drive slow, medium-range (1–5 μm), point-to-point transport in cortical cell regions. Altogether, these data support a model in which myosin-V establishes local cortical delivery of kinesin-bound cargos through a combination of tethering and active transport

    Formation of microtubule-based traps controls the sorting and concentration of vesicles to restricted sites of regenerating neurons after axotomy

    Get PDF
    Transformation of a transected axonal tip into a growth cone (GC) is a critical step in the cascade leading to neuronal regeneration. Critical to the regrowth is the supply and concentration of vesicles at restricted sites along the cut axon. The mechanisms underlying these processes are largely unknown. Using online confocal imaging of transected, cultured Aplysia californica neurons, we report that axotomy leads to reorientation of the microtubule (MT) polarities and formation of two distinct MT-based vesicle traps at the cut axonal end. Approximately 100 μm proximal to the cut end, a selective trap for anterogradely transported vesicles is formed, which is the plus end trap. Distally, a minus end trap is formed that exclusively captures retrogradely transported vesicles. The concentration of anterogradely transported vesicles in the former trap optimizes the formation of a GC after axotomy

    Досвід створення та функціонування Державної системи правової інформації Республіки Білорусь

    Get PDF
    Щодо досвіду створення та особливостей функціонування білоруської моделі державної системи правової інформації.Относительно опыта создания и особенностей функционирования белорусской модели государственной системы правовой информации.In relation to the experience of foundation and Рeculiarities of the Belorussia model state system of the legal information functioning

    Tropomyosin Tpm3.1 is required to maintain the structure and function of the axon initial segment

    Get PDF
    The axon initial segment (AIS) is the site of action potential initiation and serves as a cargo transport filter and diffusion barrier that helps maintain neuronal polarity. The AIS actin cytoskeleton comprises actin patches and periodic sub-membranous actin rings. We demonstrate that tropomyosin isoform Tpm3.1 co-localizes with actin patches and that the inhibition of Tpm3.1 led to a reduction in the density of actin patches. Furthermore, Tpm3.1 showed a periodic distribution similar to sub-membranous actin rings but Tpm3.1 was only partially congruent with sub-membranous actin rings. Nevertheless, the inhibition of Tpm3.1 affected the uniformity of the periodicity of actin rings. Furthermore, Tpm3.1 inhibition led to reduced accumulation of AIS structural and functional proteins, disruption in sorting somatodendritic and axonal proteins, and a reduction in firing frequency. These results show that Tpm3.1 is necessary for the structural and functional maintenance of the AIS.Peer reviewe

    Pericentrosomal targeting of Rab6 secretory vesicles by Bicaudal-D-related protein 1 (BICDR-1) regulates neuritogenesis

    Get PDF
    Membrane and secretory trafficking are essential for proper neuronal development. However, the molecular mechanisms that organize secretory trafficking are poorly understood. Here, we identify Bicaudal-D-related protein 1 (BICDR-1) as an effector of the small GTPase Rab6 and key component of the molecular machinery that controls secretory vesicle transport in developing neurons. BICDR-1 interacts with kinesin motor Kif1C, the dynein/dynactin retrograde motor complex, regulates the pericentrosomal localization of Rab6-positive secretory vesicles and is required for neural development in zebrafish. BICDR-1 expression is high during early neuronal development and strongly declines during neurite outgrowth. In young neurons, BICDR-1 accumulates Rab6 secretory vesicles around the centrosome, restricts anterograde secretory transport and inhibits neuritogenesis. Later during development, BICDR-1 expression is strongly reduced, which permits anterograde secretory transport required for neurite outgrowth. These results indicate an important role for BICDR-1 as temporal regulator of secretory trafficking during the early phase of neuronal differentiation
    corecore