105 research outputs found

    Anticancer properties of distinct antimalarial drug classes

    Get PDF
    We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase) inhibitors effected potent inhibition of proliferation with IC 50 s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase) and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor), emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC 50 s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings

    Protein-tyrosine Phosphatase H1 Controls Growth Hormone Receptor Signaling and Systemic Growth

    Get PDF
    Several protein-tyrosine phosphatases (PTPs) have been implicated in the control of growth hormone receptor (GHR) signaling, but none have been shown to affect growth in vivo. We have applied a battery of molecular and cellular approaches to test a family-wide panel of PTPs for interference with GHR signaling. Among the subset of PTPs that showed activity in multiple readouts, we selected PTP-H1/PTPN3 for further in vivo studies and found that mice lacking the PTP-H1 catalytic domain show significantly enhanced growth over their wild type littermates. In addition, PTP-H1 mutant animals had enhanced plasma and liver mRNA expression of insulin-like growth factor 1, as well as increased bone density and mineral content. These observations point to a controlling role for PTP-H1 in modulating GHR signaling and systemic growth through insulin-like growth factor 1 secretion

    Regulation of LRRK2 Expression Points to a Functional Role in Human Monocyte Maturation

    Get PDF
    Genetic variants of Leucine-Rich Repeat Kinase 2 (LRRK2) are associated with a significantly enhanced risk for Parkinson disease, the second most common human neurodegenerative disorder. Despite major efforts, our understanding of LRRK2 biological function and regulation remains rudimentary. In the present study we analyze LRRK2 mRNA and protein expression in sub-populations of human peripheral blood mononuclear cells (PBMCs). LRRK2 mRNA and protein was found in circulating CD19+ B cells and in CD14+ monocytes, whereas CD4+ and CD8+ T cells were devoid of LRRK2 mRNA. Within CD14+ cells the CD14+CD16+ sub-population of monocytes exhibited high levels of LRRK2 protein, in contrast to CD14+CD16- cells. However both populations expressed LRRK2 mRNA. As CD14+CD16+ cells represent a more mature subset of monocytes, we monitored LRRK2 expression after in vitro treatment with various stress factors known to induce monocyte activation. We found that IFN-γ in particular robustly increased LRRK2 mRNA and protein levels in monocytes concomitant with a shift of CD14+CD16− cells towards CD14+CD16+cells. Interestingly, the recently described LRRK2 inhibitor IN-1 attenuated this shift towards CD14+CD16+ after IFN-γ stimulation. Based on these findings we speculate that LRRK2 might have a role in monocyte maturation. Our results provide further evidence for the emerging role of LRRK2 in immune cells and regulation at the transcriptional and translational level. Our data might also reflect an involvement of peripheral and brain immune cells in the disease course of PD, in line with increasing awareness of the role of the immune system in PD

    Bovine proteins containing poly-glutamine repeats are often polymorphic and enriched for components of transcriptional regulatory complexes

    Get PDF
    peer-reviewedBackground: About forty human diseases are caused by repeat instability mutations. A distinct subset of these diseases is the result of extreme expansions of polymorphic trinucleotide repeats; typically CAG repeats encoding poly-glutamine (poly-Q) tracts in proteins. Polymorphic repeat length variation is also apparent in human poly-Q encoding genes from normal individuals. As these coding sequence repeats are subject to selection in mammals, it has been suggested that normal variations in some of these typically highly conserved genes are implicated in morphological differences between species and phenotypic variations within species. At present, poly-Q encoding genes in non-human mammalian species are poorly documented, as are their functions and propensities for polymorphic variation. Results: The current investigation identified 178 bovine poly-Q encoding genes (Q ≥ 5) and within this group, 26 genes with orthologs in both human and mouse that did not contain poly-Q repeats. The bovine poly-Q encoding genes typically had ubiquitous expression patterns although there was bias towards expression in epithelia, brain and testes. They were also characterised by unusually large sizes. Analysis of gene ontology terms revealed that the encoded proteins were strongly enriched for functions associated with transcriptional regulation and many contributed to physical interaction networks in the nucleus where they presumably act cooperatively in transcriptional regulatory complexes. In addition, the coding sequence CAG repeats in some bovine genes impacted mRNA splicing thereby generating unusual transcriptional diversity, which in at least one instance was tissue-specific. The poly-Q encoding genes were prioritised using multiple criteria for their likelihood of being polymorphic and then the highest ranking group was experimentally tested for polymorphic variation within a cattle diversity panel. Extensive and meiotically stable variation was identified. Conclusions: Transcriptional diversity can potentially be generated in poly-Q encoding genes by the impact of CAG repeat tracts on mRNA alternative splicing. This effect, combined with the physical interactions of the encoded proteins in large transcriptional regulatory complexes suggests that polymorphic variations of proteins in these complexes have strong potential to affect phenotype.Dairy Australia (through the Innovative Dairy Cooperative Research Center

    Transcriptional Regulation of N-Acetylglutamate Synthase

    Get PDF
    The urea cycle converts toxic ammonia to urea within the liver of mammals. At least 6 enzymes are required for ureagenesis, which correlates with dietary protein intake. The transcription of urea cycle genes is, at least in part, regulated by glucocorticoid and glucagon hormone signaling pathways. N-acetylglutamate synthase (NAGS) produces a unique cofactor, N-acetylglutamate (NAG), that is essential for the catalytic function of the first and rate-limiting enzyme of ureagenesis, carbamyl phosphate synthetase 1 (CPS1). However, despite the important role of NAGS in ammonia removal, little is known about the mechanisms of its regulation. We identified two regions of high conservation upstream of the translation start of the NAGS gene. Reporter assays confirmed that these regions represent promoter and enhancer and that the enhancer is tissue specific. Within the promoter, we identified multiple transcription start sites that differed between liver and small intestine. Several transcription factor binding motifs were conserved within the promoter and enhancer regions while a TATA-box motif was absent. DNA-protein pull-down assays and chromatin immunoprecipitation confirmed binding of Sp1 and CREB, but not C/EBP in the promoter and HNF-1 and NF-Y, but not SMAD3 or AP-2 in the enhancer. The functional importance of these motifs was demonstrated by decreased transcription of reporter constructs following mutagenesis of each motif. The presented data strongly suggest that Sp1, CREB, HNF-1, and NF-Y, that are known to be responsive to hormones and diet, regulate NAGS transcription. This provides molecular mechanism of regulation of ureagenesis in response to hormonal and dietary changes

    Protein tyrosine phosphatases in glioma biology

    Get PDF
    Gliomas are a diverse group of brain tumors of glial origin. Most are characterized by diffuse infiltrative growth in the surrounding brain. In combination with their refractive nature to chemotherapy this makes it almost impossible to cure patients using combinations of conventional therapeutic strategies. The drastically increased knowledge about the molecular underpinnings of gliomas during the last decade has elicited high expectations for a more rational and effective therapy for these tumors. Most studies on the molecular pathways involved in glioma biology thus far had a strong focus on growth factor receptor protein tyrosine kinase (PTK) and phosphatidylinositol phosphatase signaling pathways. Except for the tumor suppressor PTEN, much less attention has been paid to the PTK counterparts, the protein tyrosine phosphatase (PTP) superfamily, in gliomas. PTPs are instrumental in the reversible phosphorylation of tyrosine residues and have emerged as important regulators of signaling pathways that are linked to various developmental and disease-related processes. Here, we provide an overview of the current knowledge on PTP involvement in gliomagenesis. So far, the data point to the potential implication of receptor-type (RPTPδ, DEP1, RPTPμ, RPTPζ) and intracellular (PTP1B, TCPTP, SHP2, PTPN13) classical PTPs, dual-specific PTPs (MKP-1, VHP, PRL-3, KAP, PTEN) and the CDC25B and CDC25C PTPs in glioma biology. Like PTKs, these PTPs may represent promising targets for the development of novel diagnostic and therapeutic strategies in the treatment of high-grade gliomas

    New developments in anti-malarial target candidate and product profiles

    Full text link
    corecore