2,829 research outputs found

    Entanglement, fidelity, and quantum-classical correlations with an atom walking in a quantized cavity field

    Full text link
    Stability and instability of quantum evolution are studied in the interaction between a two-level atom with photon recoil and a quantized field mode in an ideal cavity, the basic model of cavity quantum electrodynamics (QED). It is shown that the Jaynes-Cummings dynamics can be unstable in the regime of chaotic walking of the atomic center-of-mass in the quantized field of a standing wave in the absence of any kind of interaction with environment. This kind of quantum instability manifests itself in strong variations of reduced quantum purity and entropy, correlating with the respective classical Lyapunov exponent, and in exponential sensitivity of fidelity of quantum states to small variations in the atom-field detuning. The connection between quantum entanglement and fidelity and the center-of-mass motion is clarified analytically and numerically for a few regimes of that motion. The results are illustrated with two specific initial field states: the Fock and coherent ones. Numerical experiments demonstrate various manifestations of the quantum-classical correspondence, including dynamical chaos and fractals, which can be, in principle, observed in real experiments with atoms and photons in high finesse cavities

    Ideal kink instability of a magnetic loop equilibrium

    Full text link
    The force-free coronal loop model by Titov & D\'emoulin (1999} is found to be unstable with respect to the ideal kink mode, which suggests this instability as a mechanism for the initiation of flares. The long-wavelength (m=1m=1) mode grows for average twists \Phi\ga3.5\pi (at a loop aspect ratio of ≈\approx 5). The threshold of instability increases with increasing major loop radius, primarily because the aspect ratio then also increases. Numerically obtained equilibria at subcritical twist are very close to the approximate analytical equilibrium; they do not show indications of sigmoidal shape. The growth of kink perturbations is eventually slowed down by the surrounding potential field, which varies only slowly with radius in the model. With this field a global eruption is not obtained in the ideal MHD limit. Kink perturbations with a rising loop apex lead to the formation of a vertical current sheet below the apex, which does not occur in the cylindrical approximation.Comment: Astron. Astrophys. Lett., accepte

    The use of ICT in the assessment of modern languages: the English context and European viewpoints

    Get PDF
    The ever increasing explosion of highly attractive multimedia resources on offer has boosted the use of information and communication technology (ICT) in the teaching and learning of modern languages. The use of ICT to assess languages is less frequent, however, although online testing is starting to develop. This paper examines the national context for the assessment of modern foreign language proficiency in England, outlines the kinds of assessment currently available and the development of electronic forms of assessment and compares the above with the survey results of a European Union (EU) funded project on current good practice in online assessment of languages in other European countries. The findings indicate that speaking is inadequately served by online testing as tests currently focus primarily on receptive language skills. The implications for future successful online testing include the incorporation of interactive skills and effective formative feedback

    A Multi-Functional View of Moral Disengagement: Exploring the Effects of Learning the Consequences

    Full text link
    This paper takes us beyond the unethical act and explores the use of moral disengagement as a multi-stage, multi-functional regulatory, and coping mechanism that not only allows individuals to engage in unethical behavior, but also manage the negative emotions (i.e., guilt and shame) from learning the consequences of such behavior. A resource-based lens is applied to the moral disengagement process, suggesting that individuals not only morally disengage prior to committing an unethical act in order to conserve their own resources, but also morally disengage as a coping mechanism to reduce emotional duress upon learning of the consequences of their actions, which we describe as post-moral disengagement. These assertions are tested using a scenario-based laboratory study consisting of 182 respondents. Findings indicate that individuals will morally disengage in order to commit an unethical act, will experience negative emotions from having learned of the consequences, and then will engage in post-moral disengagement as a coping mechanism. In addition, the findings suggest that guilt and shame relate differently to moral disengagement

    On Signatures of Twisted Magnetic Flux Tube Emergence

    Full text link
    Recent studies of NOAA active region 10953, by Okamoto {\it et al.} ({\it Astrophys. J. Lett.} {\bf 673}, 215, 2008; {\it Astrophys. J.} {\bf 697}, 913, 2009), have interpreted photospheric observations of changing widths of the polarities and reversal of the horizontal magnetic field component as signatures of the emergence of a twisted flux tube within the active region and along its internal polarity inversion line (PIL). A filament is observed along the PIL and the active region is assumed to have an arcade structure. To investigate this scenario, MacTaggart and Hood ({\it Astrophys. J. Lett.} {\bf 716}, 219, 2010) constructed a dynamic flux emergence model of a twisted cylinder emerging into an overlying arcade. The photospheric signatures observed by Okamoto {\it et al.} (2008, 2009) are present in the model although their underlying physical mechanisms differ. The model also produces two additional signatures that can be verified by the observations. The first is an increase in the unsigned magnetic flux in the photosphere at either side of the PIL. The second is the behaviour of characteristic photospheric flow profiles associated with twisted flux tube emergence. We look for these two signatures in AR 10953 and find negative results for the emergence of a twisted flux tube along the PIL. Instead, we interpret the photospheric behaviour along the PIL to be indicative of photospheric magnetic cancellation driven by flows from the dominant sunspot. Although we argue against flux emergence within this particular region, the work demonstrates the important relationship between theory and observations for the successful discovery and interpretation of signatures of flux emergence.Comment: 14 pages, 8 figures, accepted for publication in Solar Physic

    A three-dimensional study of reconnection, current sheets and jets resulting from magnetic flux emergence in the Sun

    Full text link
    We present the results of a set of three-dimensional numerical simulations of magnetic flux emergence from below the photosphere into the corona that include a uniform and horizontal coronal magnetic field mimicking a pre-existing large-scale coronal magnetic system. Cases with different relative orientations of the upcoming and coronal fields are studied. Upon contact, a concentrated current sheet with the shape of an arch or bridge is formed at the interface which marks the positions of maximum jump in the field vector between the two systems. Relative angles above 90 degrees yield abundant magnetic reconnection and plasma heating. The reconnection is seen to be intrisincally three-dimensional in nature, except at singular positions along the current sheet. It drives collimated high-speed and high-temperature outflows only a short distance from the reconnection site that propagate along the ambient magnetic field lines as jets. Due to the low plasma density in the corona, these jets may propagate over large distances and, therefore help distribute high-density and high-temperature plasma along these newly reconnected field lines. The experiments permit to discern and visualize the three-dimensional shape and relative position of the upcoming plasma hill, high-speed jets and subphotospheric flux system. As a result of the reconnection, magnetic field lines from the magnetized plasma below the surface end up as coronal field lines, thus causing a profound change in the connectivity of the magnetic regions in the corona. The experiments presented here thus yield a number of features repeatedly observed with the TRACE satellite and the YOHKOH-SXT detector, like the establishment of connectivity between emergent and pre-existing active regions, local heating and high-velocity outflows.Comment: 13 pages, 7 figures, inpress ApJ

    Polydisperse Adsorption: Pattern Formation Kinetics, Fractal Properties, and Transition to Order

    Full text link
    We investigate the process of random sequential adsorption of polydisperse particles whose size distribution exhibits a power-law dependence in the small size limit, P(R)∌Rα−1P(R)\sim R^{\alpha-1}. We reveal a relation between pattern formation kinetics and structural properties of arising patterns. We propose a mean-field theory which provides a fair description for sufficiently small α\alpha. When α→∞\alpha \to \infty, highly ordered structures locally identical to the Apollonian packing are formed. We introduce a quantitative criterion of the regularity of the pattern formation process. When α≫1\alpha \gg 1, a sharp transition from irregular to regular pattern formation regime is found to occur near the jamming coverage of standard random sequential adsorption with monodisperse size distribution.Comment: 8 pages, LaTeX, 5 figures, to appear in Phys.Rev.

    Trapping of Single Atoms with Single Photons in Cavity QED

    Get PDF
    Two recent experiments have reported the trapping of individual atoms inside optical resonators by the mechanical forces associated with single photons [Hood et al., Science 287, 1447 (2000) and Pinkse et al., Nature 404, 365 (2000)]. Here we analyze the trapping dynamics in these settings, focusing on two points of interest. Firstly, we investigate the extent to which light-induced forces in these experiments are distinct from their free-space counterparts. Secondly, we explore the quantitative features of the resulting atomic motion and how these dynamics are mapped onto variations of the intracavity field. Not surprisingly, qualitatively distinct atomic dynamics arise as the coupling and dissipative rates are varied. For the experiment of Hood et al., we show that atomic motion is largely conservative and is predominantly in radial orbits transverse to the cavity axis. A comparison with the free-space theory demonstrates that the fluctuations of the dipole force are suppressed by an order of magnitude. This effect is based upon the Jaynes-Cummings eigenstates of the atom-cavity system and represents qualitatively new physics for optical forces at the single-photon level. By contrast, even in a regime of strong coupling in the experiment of Pinkse et al., there are only small quantitative distinctions between the free-space theory and the quantum theory, so it is not clear that description of this experiment as a novel single-quantum trapping effect is necessary. The atomic motion is strongly diffusive, leading to an average localization time comparable to the time for an atom to transit freely through the cavity and to a reduction in the ability to infer aspects of the atomic motion from the intracavity photon number.Comment: 19 pages, 22 figure files, REVTEX, corrected spelling, LaTeX now produces postscript which includes figures, minor changes to figures. Final version to be published in Physical Review A, expanded summary of results in introduction, minor changes to figures and tex
    • 

    corecore