6,781 research outputs found

    Audiometry and hearing aids

    Get PDF
    Not availabl

    Discriminating cool-water from warm-water carbonates and their diagenetic environments using element geochemistry: the Oligocene Tikorangi Formation (Taranaki Basin) and the dolomite effect

    Get PDF
    Fields portrayed within bivariate element plots have been used to distinguish between carbonates formed in warm- (tropical) water and cool- (temperate) water depositional settings. Here, element concentrations (Ca, Mg, Sr, Na, Fe, and Mn) have been determined for the carbonate fraction of bulk samples from the late Oligocene Tikorangi Formation, a subsurface, mixed dolomite-calcite, cool-water limestone sequence in Taranaki Basin, New Zealand. While the occurrence of dolomite is rare in New Zealand Cenozoic carbonates, and in cool-water carbonates more generally, the dolomite in the Tikorangi carbonates is shown to have a dramatic effect on the "traditional" positioning of cool-water limestone fields within bivariate element plots. Rare undolomitised, wholly calcitic carbonate samples in the Tikorangi Formation have the following average composition: Mg 2800 ppm; Ca 319 100 ppm; Na 800 ppm; Fe 6300 ppm; Sr 2400 ppm; and Mn 300 ppm. Tikorangi Formation dolomite-rich samples (>15% dolomite) have average values of: Mg 53 400 ppm; Ca 290 400 ppm; Na 4700 ppm; Fe 28 100 ppm; Sr 5400 ppm; and Mn 500 ppm. Element-element plots for dolomite-bearing samples show elevated Mg, Na, and Sr values compared with most other low-Mg calcite New Zealand Cenozoic limestones. The increased trace element contents are directly attributable to the trace element-enriched nature of the burial-derived dolomites, termed here the "dolomite effect". Fe levels in the Tikorangi Formation carbonates far exceed both modern and ancient cool-water and warm-water analogues, while Sr values are also higher than those in modern Tasmanian cool-water carbonates, and approach modern Bahaman warm-water carbonate values. Trace element data used in conjunction with more traditional petrographic data have aided in the diagenetic interpretation of the carbonate-dominated Tikorangi sequence. The geochemical results have been particularly useful for providing more definitive evidence for deep burial dolomitisation of the deposits under the influence of marine-modified pore fluids

    The South Dakota cooperative land use effort: A state level remote sensing demonstration project

    Get PDF
    Remote sensing technology can satisfy or make significant contributions toward satisfying many of the information needs of governmental natural resource planners and policy makers. Recognizing this potential, the South Dakota State Planning Bureau and the EROS Data Center together formulated the framework for an ongoing Land Use and Natural Resource Inventory and Information System Program. Statewide land use/land cover information is generated from LANDSAT digital data and high altitude photography. Many applications of the system are anticipated as it evolves and data are added from more conventional sources. The conceptualization, design, and implementation of the program are discussed

    Superradiance for atoms trapped along a photonic crystal waveguide

    Get PDF
    We report observations of superradiance for atoms trapped in the near field of a photonic crystal waveguide (PCW). By fabricating the PCW with a band edge near the D1_1 transition of atomic cesium, strong interaction is achieved between trapped atoms and guided-mode photons. Following short-pulse excitation, we record the decay of guided-mode emission and find a superradiant emission rate scaling as ΓˉSRNˉΓ1D\bar{\Gamma}_{\rm SR}\propto\bar{N}\cdot\Gamma_{\rm 1D} for average atom number 0.19Nˉ2.60.19 \lesssim \bar{N} \lesssim 2.6 atoms, where Γ1D/Γ0=1.1±0.1\Gamma_{\rm 1D}/\Gamma_0 =1.1\pm0.1 is the peak single-atom radiative decay rate into the PCW guided mode and Γ0\Gamma_{0} is the Einstein-AA coefficient for free space. These advances provide new tools for investigations of photon-mediated atom-atom interactions in the many-body regime.Comment: 11 pages, 10 figure

    Building one molecule from a reservoir of two atoms

    Get PDF
    Chemical reactions typically proceed via stochastic encounters between reactants. Going beyond this paradigm, we combine exactly two atoms into a single, controlled reaction. The experimental apparatus traps two individual laser-cooled atoms (one sodium and one cesium) in separate optical tweezers and then merges them into one optical dipole trap. Subsequently, photoassociation forms an excited-state NaCs molecule. The discovery of previously unseen resonances near the molecular dissociation threshold and measurement of collision rates are enabled by the tightly trapped ultracold sample of atoms. As laser-cooling and trapping capabilities are extended to more elements, the technique will enable the study of more diverse, and eventually more complex, molecules in an isolated environment, as well as synthesis of designer molecules for qubits

    Consequences of spontaneous reconnection at a two-dimensional non-force-free current layer

    Get PDF
    Magnetic neutral points, where the magnitude of the magnetic field vanishes locally, are potential locations for energy conversion in the solar corona. The fact that the magnetic field is identically zero at these points suggests that for the study of current sheet formation and of any subsequent resistive dissipation phase, a finite beta plasma should be considered, rather than neglecting the plasma pressure as has often been the case in the past. The rapid dissipation of a finite current layer in non-force-free equilibrium is investigated numerically, after the sudden onset of an anomalous resistivity. The aim of this study is to determine how the energy is redistributed during the initial diffusion phase, and what is the nature of the outward transmission of information and energy. The resistivity rapidly diffuses the current at the null point. The presence of a plasma pressure allows the vast majority of the free energy to be transferred into internal energy. Most of the converted energy is used in direct heating of the surrounding plasma, and only about 3% is converted into kinetic energy, causing a perturbation in the magnetic field and the plasma which propagates away from the null at the local fast magnetoacoustic speed. The propagating pulses show a complex structure due to the highly non-uniform initial state. It is shown that this perturbation carries no net current as it propagates away from the null. The fact that, under the assumptions taken in this paper, most of the magnetic energy released in the reconnection converts internal energy of the plasma, may be highly important for the chromospheric and coronal heating problem

    Irritable Bowel Syndrome patients exhibit depressive and anxiety scores in the subsyndromal range

    Get PDF
    Irritable bowel syndrome (IBS) patients frequently experience affective disorders and psychiatric outpatients frequently meet criteria for IBS. The exact nature of this co-morbidity is not clear. 34 patients with Rome-II diagnosed IBS were recruited from a Gastroenterology clinic. Patients with social anxiety disorder (10 SSRI-remitted and 7 untreated subjects) were used as a psychiatric comparison, 28 normal subjects from our register were included as a fourth group (Volunteers). Depressive and anxiety symptoms were measured by the Beck Depression Inventory (BDI) and Spielberger Trait Anxiety Inventory (STAI), respectively. Personality traits were measured with the Swedish universities Scales of Personality (SSP). IBS subjects had BDI and STAI scores intermediate between those of volunteers and patients, despite their lack of a co-morbid psychiatric diagnosis. A principle component factor analysis of the SSP dataset corresponded closely to the solution published with other samples. ANOVA revealed significant between-group differences for 7 of the 13 SSP variables
    corecore