7 research outputs found

    A lithium-isotope perspective on the evolution of carbon and silicon cycles

    Get PDF
    The evolution of the global carbon and silicon cycles is thought to have contributed to the long-term stability of Earth's climate. Many questions remain, however, regarding the feedback mechanisms at play, and there are limited quantitative constraints on the sources and sinks of these elements in Earth's surface environments. Here we argue that the lithium-isotope record can be used to track the processes controlling the long-term carbon and silicon cycles. By analysing more than 600 shallow-water marine carbonate samples from more than 100 stratigraphic units, we construct a new carbonate-based lithium-isotope record spanning the past 3 billion years. The data suggest an increase in the carbonate lithium-isotope values over time, which we propose was driven by long-term changes in the lithium-isotopic conditions of sea water, rather than by changes in the sedimentary alterations of older samples. Using a mass-balance modelling approach, we propose that the observed trend in lithium-isotope values reflects a transition from Precambrian carbon and silicon cycles to those characteristic of the modern. We speculate that this transition was linked to a gradual shift to a biologically controlled marine silicon cycle and the evolutionary radiation of land plants

    Reduction spheroids preserve a uranium isotope record of the ancient deep continental biosphere

    Get PDF
    S.M. acknowledges the support of the NASA Astrobiology Institute grant NNA13AA90A, Foundations of Complex Life, Evolution, Preservation and Detection on Earth and Beyond, and the European Union’s Horizon 2020 Research and Innovation Programme under Marie SkƂodowska-Curie grant agreement 747877. Av.S.H. was supported by a NASA Astrobiology Institute Postdoctoral Fellowship and acknowledges the support of Xiangli Wang and Devon Cole for lab assistance. S.M. and Av.S.H. thank Noah Planavsky for technical advice, lab support, and comments on an early draft. J.P. was supported by NERC under grant number NE/L001764/1. The isotope facility at SUERC is supported by NERC. The authors thank the two anonymous referees for constructive criticisms that improved the manuscript.Peer reviewedPublisher PD

    Marine cements reveal the structure of an anoxic, ferruginous Neoproterozoic ocean

    Get PDF
    Neoproterozoic oceans provided the setting for the rise of animals, yet little is known of their chemical composition. Marine carbonates from the Cryogenian Oodnaminta Reef Complex, South Australia, reveal the chemical structure of a Neoproterozoic ocean. Pseudo-depth profiles from shallow- to deep-water reef facies have been constructed from geochemical and sedimentological analysis of marine cements. Evidence suggests that under peritidal oxic/anoxic chemocline, the water column was largely anoxic, strongly ferruginous and had a chemistry profoundly different from modern seawater. These geochemical data suggest early Archean-like conditions for this Late Cryogenian ocean, posing problems for metazoan evolution in extremely anoxic conditions

    Mixed carbonate-siliciclastic tidal sedimentation in the Miocene to Pliocene Bouse Formation, palaeo-Gulf of California

    No full text
    Mixed carbonate–siliciclastic deposits provide unique insights into hydrodynamic processes that control sedimentation in tidal systems. This study presents sedimentological and ichnological data from the upper Miocene to lower Pliocene Bouse Formation, which accumulated during regional transgression at the margin of a tidal strait near the north end of the ancestral Gulf of California. The basal carbonate member of the Bouse Formation records deposition in a tide‐influenced, compositionally mixed carbonate–siliciclastic system dominated by salt marsh, tidal flat and channel environments. The basal carbonate member is an overall deepening up succession of facies associations comprising: Facies Association 1 – siliciclastic‐rich heterolithic facies, lime mudstone with desiccation cracks, and plant debris rich carbonate silt interpreted as siliciclastic‐rich tidal flats; Facies Association 2 – well‐sorted gravels, siliciclastic‐rich sandy strata, lime mudstone with desiccation cracks, and sandy microbial micrite interpreted as tidal‐channel deposits; Facies Association 3 – carbonate‐rich heterolithic lime mudstone to well‐sorted, cross‐bedded bioclastic grainstone interpreted as intertidal to shallow subtidal deposits; and Facies Association 4 – lime mudstone interpreted as shallow to deep subtidal low‐energy deposits that record the end of tidal conditions in the basin. Trace fossils include marine forms Gyrolithes, Teichichnus and Thalassinoides, and non‐diagnostic forms Arenicolites, Cochlichnus, Conichnus, Lockeia, Planolites, Skolithos and Treptichnus (known from marine, brackish and freshwater environments). The diminutive size of trace fossils reflects brackish conditions created by mixing of freshwater and seawater. This study provides evidence for a late Miocene to early Pliocene humid climate in south‐western North America, in stark contrast to the modern hyperarid climate. Factors that controlled the relative percentage of mixed carbonate and siliciclastic sediment include siliciclastic input from local rivers, in situ carbonate production, current energy, degree of tidal mixing and relative sea level. Pronounced facies variability at bedform, outcrop and basin scale documented in this study appears to be an important characteristic of mixed carbonate–siliciclastic deposits in tidal depositional systems
    corecore