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The evolution of the global carbon and silicon cycles are thought to have contributed to 33 
the long-term stability of the Earth’s climate1–3. Many questions remain, however, 34 



regarding the feedback mechanisms at play and more quantitative constraints on the 35 
sources and sinks of these elements in the Earth’s surface environments are lacking4–12. 36 
Here we argue that the lithium isotope system can be used to track processes controlling 37 
the long-term carbon and silicon cycles. Based on the analysis of over 600 shallow-water 38 
marine carbonate samples from 101 stratigraphic units, we construct a new carbonate 39 
lithium isotope record spanning the past 3 billion years. The data suggest an increase in 40 
the carbonate lithium isotope values over time, which we propose was driven by long-term 41 
changes in the lithium isotopic conditions of seawater rather than changes in the 42 
alterations of older samples. Based on a mass balance modelling approach, we propose 43 
that the observed trend in lithium isotope values reflects a transition from the 44 
Precambrian carbon and silicon cycles to those more similar to the present day. We 45 
speculate that this transition may be linked to a shift to a biologically controlled marine 46 
silicon cycle and the radiation of land plants13,14. 47 
 48 
Earth has maintained a clement climate for the vast majority of the past 3.5 billon years, despite 49 
large changes in solar luminosity, atmospheric oxygen concentrations, and crustal evolution1. 50 
Climate stability has allowed for Earth’s persistent habitation and proliferation of complex life 51 
over billion-year time scales. Feedbacks within the coupled carbon (C) and silicon (Si) cycles 52 
maintain this stability by regulating atmospheric carbon dioxide levels2, as exemplified by the 53 
continental silicate weathering feedback which removes atmospheric carbon dioxide during 54 
continental weathering and transfers silicon to the ocean. This climate dependent mechanism is 55 
the most commonly invoked process stabilizing Earth’s long-term climate2,3. 56 
 57 
The idea that the terrestrial silicate weathering feedback played the dominant role in climate 58 
regulation through Earth’s history has been challenged in the last decade4,5. For example, there 59 
have been several recent suggestions that sedimentary and hydrothermal processes in the marine 60 
realm strongly affected atmospheric carbon dioxide levels earlier in Earth’s history6–9. It has 61 
been proposed that extensive authigenic clay formation in marine sediments (reverse 62 
weathering) in Si-rich oceans was a key factor leading to a warm climate through most of 63 
Earth’s history8,10. In this view, the evolutionary radiation of siliceous organisms (sponges, 64 
radiolarians, and later diatoms) forced a drop in dissolved marine Si levels and hence a marked 65 
decrease in the extent of reverse weathering. There has also been extensive debate about 66 
whether, how, and when land plants transformed the silicate weathering feedback11,12. 67 



Disagreement on fundamental aspects of the long-term C cycle demands new empirical records 68 
that provide constraints on the evolution of the C and Si cycles over geological time. 69 
 70 
The Li isotope system can be used to track processes controlling the long-term C and Si cycles. 71 
Seawater Li isotope values are strongly influenced by the global extent and dominant modes of 72 
clay formation and therefore can be used to determine global weathering regimes15. Lithium in 73 
the crust is predominantly found in silicate minerals and the largest Li isotope fractionations 74 
occur during the low–temperature formation of secondary silicate minerals—largely clays. Clay 75 
minerals preferentially incorporate the lighter Li isotope (6Li), leaving residual waters enriched 76 
in the heavier isotope (7Li)16. Clay formation occurs on land during incongruent silicate 77 
weathering and in the oceans during off-axis seafloor alteration and during reverse weathering 78 
in sediments. Therefore, clay formation in the marine and terrestrial realms has the potential to 79 
drive the dissolved seawater Li isotope signature towards values heavier than the average crust 80 
(crustal value is ~0‰; Ref. 17)15,16,18,19. Tracking clay formation and its link to continental and 81 
marine weathering processes, the Li isotope system is a powerful tool for investigating the long-82 
term controls of the C and Si cycles. 83 
 84 
Given that carbonates can be a reliable archive of seawater δ7Li 18,20,21, we generated a new 85 
carbonate Li isotope record through Earth’s history. We analysed over 600 shallow-water 86 
marine carbonate samples from 101 stratigraphic units that range in age from 3.0 Ga to the 87 
modern (Fig. 1 and SI Tables 1 and 2). Our sampling focused on micritic carbonates but also 88 
included grainstones, reef cements, microbialites, and brachiopods. Samples were selected using 89 
a combination of standard and cathodoluminescence petrography (see SI for additional 90 
information on sampling protocols and selected units). 91 
 92 
A major concern with all carbonate-based proxies is whether the samples record primary signals 93 
or if they have been overprinted22. The Li isotopic composition of shallow-water marine 94 
carbonates in the sedimentary record depends on both the primary mineralogy of the sediment 95 
(aragonite vs. calcite) and the type of alteration during early burial23. Additionally, carbonate 96 
samples can undergo late-stage alteration. Given potential uncertainties associated with these 97 
processes, we tested the extent to which we can reconstruct seawater values from our carbonate 98 
record in four ways (see SI). First, we generated a complementary record to our samples from 99 
well-preserved early marine cements—the carbonate component that can be most robustly 100 
screened for diagenetic alteration in both Phanerozoic and Precambrian rocks24 (see SI Table 1; 101 



Supplementary information). Second, to gauge the effects of mineralogy and diagenesis, besides 102 
petrology, we analysed all samples for major/minor/trace element ratios. Third, following Ref. 103 
25, we focused our sampling on carbonate units that are not from carbon isotope excursions—104 
given that these excursions are interpreted as being a signal for either short-term carbon cycle 105 
perturbations or diagenetic events  (see SI)26,27. Lastly, a subset of our sample suite was 106 
analysed for Ca isotopes, which has emerged as a powerful tracer of the extent and type of 107 
diagenetic alteration in shallow-water marine carbonates28,29. 108 
  109 
Our dataset suggests a dramatic change in carbonate Li isotope values through time (Fig. 1 and 110 
SI Table 2). Cainozoic and Mesozoic values range from 14.6‰ to 29.5‰ with an average of 111 
23.1±3.8‰ 1STD (n = 45). This is similar to foraminifera records from the Cainozoic that range 112 
from 20.1‰ to 33.7‰ with an average of 25.9±2.7‰ 1STD (n = 319)18,30,31. Low carbonate 113 
δ7Li values persist through most of the Palaeozoic with a mean δ7Li = 10.1±4.3‰ 1STD (n = 114 
263) (Fig. 1). Precambrian values range from -3.8‰ to 23.5‰ but with a mean δ7Li = 115 
7.7±5.7‰ 1STD (n = 217). Basic descriptive statistics suggests there are significant shifts in 116 
carbonate Li isotope values through time. For instance, a Welch’s ANOVA test demonstrates 117 
that δ7Li values are significantly different (F = 273.6, p < 0.001) for samples from present to 118 
end-Mesozoic (0 – 252 Ma, n = 45), from samples spanning the Palaeozoic (252 – 541 Ma, n = 119 
263), and samples spanning the Precambrian (541 – 3,000 Ma, n = 217). Critically, these low 120 
values are also found in well-preserved micro-drilled marine cements (Figs. 1, 2). The general 121 
trend in the δ7Li record in carbonates resembles, to a first-order approximation, the trend in the 122 
carbonate strontium isotope record through time (Fig. 1c). 123 
 124 
Our observed trend in Li isotope values could be a signal of varying extents of alteration or a 125 
signal for environmental evolution. However, several lines of evidence are inconsistent with the 126 
premise that our carbonate Li isotope record reflects varying extents of alteration. Importantly, 127 
the observation that low carbonate δ7Li values, relative to modern, persist for the majority of 128 
Earth’s history, even after the data set is screened for detrital contamination and diagenetic 129 
tracers, suggests an explanatory mechanism other than only alteration in our samples. Shallow-130 
water carbonate Li isotope values are likely to be 0‰–10‰ lighter than coeval seawater values, 131 
depending on the original mineralogy and the mode of burial diagenesis (see SI; Ref. 23). Yet, 132 
critically, Sr/Ca ratios and δ44/40Ca analysis can be used to track the burial offset from seawater 133 
in shallow-water carbonates23,32 (see SI), and there is no evidence for a systematic change in the 134 
mode of early marine diagenesis through time that could explain the observed ~ 15‰ increase 135 



in mean carbonate δ7Li values (or a priori reason to expect such a change). Additionally, we 136 
used a suite of commonly employed geochemical filters to constrain primary mineralogy 137 
(Sr/Ca, Mg/Ca), track detrital contamination (Al/Ca, Rb/Ca) and diagenetic alteration (Mn/Sr, 138 
Pb/Ca) (see SI for further detail). Samples screened using these methods show similar trends in 139 
the unscreened Li isotope data (Fig. 1; See SI). Nonetheless, we acknowledge that some units in 140 
our study may have experienced late-stage alteration that is not easily screened with typical 141 
elemental tracers. Critically, however, late-stage diagenetic alteration appears to result in a shift 142 
towards higher δ7Li values33, indicating that our carbonate record of lighter values in older 143 
samples is unlikely to reflect a diagenetic bias. Building upon previous work on the effects of 144 
alteration on the Li isotope system33, we argue that if detrital contribution can be ruled out, the 145 
lower boundary of the δ7Li values will most accurately represent seawater evolution. With this 146 
framework, the Li isotope record would be interpreted in a similar fashion to the scatter in the 147 
long-term Sr isotope records (e.g., Ref. 34; Fig. 1d). Further, carbonate cements with 148 
exceptionally well-preserved fabrics—samples that could not have undergone extensive 149 
alteration after deposition (see Refs. 24,35; Fig. 1)—display the same trend as our larger bulk 150 
rock dataset. 151 
 152 
Using our carbonate record, (filtered for detrital contamination, and assuming an offset of 153 
4±5‰ from seawater; see SI; following Ref. 23), we were able to reproduce previously 154 
estimated Cainozoic (Fig. S14), as well as Mesozoic and Palaeozoic δ7LiSW values (Fig. 1a). 155 
Assuming this same offset for Precambrian samples, we estimate Precambrian δ7LiSW values 156 
were on average 6-16‰, notably lighter than the modern oceans (31‰; Ref. 36). As with other 157 
isotope systems37, it will be critical to verify our reconstructed Li isotope trends in another 158 
sedimentary archive. Nonetheless, we propose that the most straightforward explanation of our 159 
carbonate Li isotope dataset is that there were significant changes in seawater Li isotope values 160 
across Earth’s history. 161 
 162 
To evaluate the mechanisms that could be driving long-term changes in seawater Li isotope 163 
values, we employed a stochastic mass balance modelling approach (Fig. 3). Specifically, we 164 
use an isotope mass balance model to conduct solution space testing. This provides a means of 165 
exploring possible configurations of the Li isotope system responsible for the long-term shift 166 
that we observe in estimated δ7LiSW values. In our simulations, we solve Li isotope mass 167 
balance at 1 Myr time intervals and allow for a wide range of possible values for high- and low- 168 
temperature hydrothermal fluxes, riverine fluxes, and their isotopic values (Table SI 3). At each 169 



time-step, we employ a Monte Carlo routine to re-sample the uniformly distributed key 170 
parameters 1,000 times, with acceptable solutions being the ones that match our estimated, 171 
error-bounded, Li isotope record (Fig. 3; see SI for the model derivation). 172 
 173 
With our modelling approach, persistently low δ7LiSW values in the Precambrian (Fig. 3 and 174 
Figs. S18-23) appear to require changes in terrestrial and marine Li cycling in Earth’s past 175 
relative to the modern. For instance, the only Earth system (i.e., the prominent combination of 176 
Li cycle parameters) that fits our data from the Precambrian (Fig. 3) requires rivers with low Li 177 
isotope values (δ7LiRiv < 10‰) together with muted isotope fractionation (∆7Li < 10‰) during 178 
Li burial in the marine realm through marine authigenic clay formation (maac) and low-179 
temperature basalt alteration (lowT). Low Precambrian δ7LiSW could be related to elevated high-180 
temperature hydrothermal Li fluxes, which are a source of relatively light Li (~6.3‰; Ref. 38). 181 
However, most geophysical models show that near modern hydrothermal activity was reached 182 
by the Paleoproterozoic39, and some estimates suggest constant hydrothermal heat flux40, which 183 
would lead to approximately constant, long-term hydrothermal Li fluxes. Therefore, consistent 184 
with our modelling results, enhanced high-temperature hydrothermal fluxes are likely not 185 
responsible for the low δ7LiSW values through most of Earth’s history. 186 
 187 
The proliferation and diversification of land plants over much of the Phanerozoic has been 188 
hypothesized to have fostered more extensive formation and retention of clay minerals in the 189 
terrestrial realm13. Our work—which calls for an increase through time in δ7LiRiv values (Fig. 190 
3)—supports this idea.  There are multiple ways in which plants may have changed weathering, 191 
but fostering soil development and increasing water-rock interaction times is one way to 192 
increase the probability of clay formation13. There is some mineralogical evidence that also 193 
supports the hypothesis that prior to the rise of land plants there was more limited paedogenic 194 
clay mineral formation41. Weathering regimes may have continued to shift until the rise to 195 
dominance of angiosperms at roughly 80 Ma14. 196 
 197 
Extensive clay formation in the marine sediment column, as has been proposed for the 198 
Precambrian8,10, is one obvious way of changing the marine Li cycle. Our prediction of a more 199 
limited effective isotope fractionation during Li burial (Δ7Limaac and Δ7LilowT) earlier in Earth’s 200 
history can be linked to rapid rates of clay formation, which could have led to high rates of Li 201 
uptake and the reaction sites being in restricted contact with the reactant pool (seawater)42. For 202 
the majority of Earth history, without the presence of Si-biomineralizers, seawater was highly 203 



oversaturated with respect to Si phases, which could have resulted in rapid and extensive clay 204 
formation8. This style of reverse weathering and Li removal is likely to have limited the 205 
effective Li isotopic fractionation (see SI; Ref. 42). The progressive decrease in marine Si 206 
concentrations over the Phanerozoic43 linked to the transition to a more biologically controlled 207 
Si cycle may, therefore, may have driven a shift in seawater Li isotope values. 208 
 209 
The apparent common occurrence of low δ7LiSW values in the Precambrian and the early 210 
Palaeozoic, supports the premise that the carbon cycle operated in a fundamentally different 211 
mode for the majority of Earth’s history compared to the present day. While we cannot use Li 212 
isotope values to constrain a single Earth system, our modelling work suggests there was a 213 
major shift in clay factories through Earth’s history—with a likely increase in clay formation on 214 
land and a decrease in clay formation in the oceans. Clay formation is a critical part of the 215 
coupled C-Si cycles, suggesting that the mode of climate regulation on Earth has changed 216 
dramatically through time. The shift from a Precambrian Earth state to the modern state can 217 
likely be attributed to significant biological innovations—the radiation of sponges, radiolarians, 218 
diatoms, and land plants. Further, our record suggests that the development of a more modern-219 
style carbon cycle tied to these ecological transitions was protracted instead of being marked by 220 
step changes. 221 
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Figure 1: Isotope records in carbonates through time. a A compilation of lithium isotope 366 
values measured in different types of carbonates, including the new data from this study (open 367 
symbols) and previously published data (closed symbols) (ntotal = 1396; Refs. 368 
18,20,21,23,30,31,33,44-46). Grey – calcite, yellow – aragonite, green – dolomite, blue - 369 
diagenetically altered carbonates, and red – samples from periods of known carbon isotope 370 
excursions. Shapes denote different types of carbonate archives: squares – cements, crosses – 371 
foraminifera, diamonds – brachiopods, triangles – belemnites, hexagons – corals. b New filtered 372 
lithium isotope data (nfiltered = 525; nnew = 712). Samples with indications of diagenetic alteration 373 
or of high detrital input (i.e., with Al/Ca > 0.00054 ppm/ppm) are omitted. Light grey squares 374 
denote new data from well-preserved marine cements (n = 74). Light grey diamonds denote 375 
brachiopods. Light grey solid curve denotes a LOWESS fit of the mean of the data. Light grey 376 
dashed curve denotes a LOWESS fit of the lowest ten percent of the values. c Oxygen isotope 377 
values measured in carbonates (Ref. 47). Blue curve denotes a robust loess fit of the data. d 378 
Strontium isotope ratios measured in carbonates (Refs. 32,48). Red curve denotes a robust loess 379 
fit of the lowest ten percent of the values.  380 



 381 
 382 
Figure 2: Thin section photomicrographs of representative well-preserved carbonates 383 
from this study. a,b Neoproterozoic carbonates: a Multiple generations of dolomite (and 384 
mimetically dolomitised calcite) marine cements and micrite from the Tonian Devede Fm., 385 
Namibia; b Well-preserved dolomitised calcite cements from the Tonian Beck Spring Dolomite, 386 
USA. c Paleozoic carbonate: calcite marine-cemented sponge from the Devonian Napier 387 
Formation, Australia. d Precambrian carbonate: calcite seafloor fans of the Neoarchean 388 
Campbellrand Gp., South Africa. The presence of well-preserved carbonate textures rules out 389 
extensive secondary alteration. 390 
  391 



 392 
 393 

Figure 3. Two-dimensional density heatmap of lithium isotope mass balance results. Each 394 
panel indicates the density of the parameters that successfully match our empirically 395 
determined, LOWESS-smoothed Li isotope record (LOWESS conducted on lower ten percent 396 
of data (dashed line in (a)), with upper and lower solid filtering bounds) through Earth’s history. 397 
The light red represents higher counts per bin, red represents lower counts per bin, and white 398 
regions represent solution space that cannot satisfy a steady-state (Fin = Fout) Li seawater isotope 399 
value as determined by our empirical record. Panels show a the Li isotope value of seawater, b 400 
riverine Li isotope value, c the isotopic fractionation associated with Li removal from seawater 401 
during basalt alteration (Δ7LilowT), d the isotopic fractionation associated with Li removal from 402 
seawater during marine authigenic clay formation (Δ7Limaac), e outgassing estimates from Refs. 403 
39,49,50, f the riverine Li flux, g the proportion of Li removed through basalt alteration (flowT), 404 
and h the proportion of Li removed through marine authigenic clay formation (fmaac). FHT is 405 
scaled linearly to a mean value of outgassing estimates. The LOWESS curve is regressed 406 
through our original data with an applied calcite fractionation from seawater (∆7Li = -4‰). The 407 



lower filtering bound is -4‰ from the LOWESS curve, representing fluid buffered solutions, 408 
whereas the upper bound is +5‰ from the LOWESS curve, representing the potential for any 409 
samples to be aragonite.  410 
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