7 research outputs found

    Concentrations of medetomidine enantiomers and vatinoxan, an α2-adrenoceptor antagonist, in plasma and central nervous tissue after intravenous coadministration in dogs

    Get PDF
    Objective To quantify the peripheral selectivity of vatinoxan (L-659,066, MK-467) in dogs by comparing the concentrations of vatinoxan, dexmedetomidine and levo-medetomidine in plasma and central nervous system (CNS) tissue after intravenous (IV) coadministration of vatinoxan and medetomidine. Study design Experimental, observational study. Animals A group of six healthy, purpose-bred Beagle dogs (four females and two males) aged 6.5 +/- 0.1 years (mean +/- standard deviation). Methods All dogs were administered a combination of medetomidine (40 mu g kg(-1)) and vatinoxan (800 mu g kg(-1)) as IV bolus. After 20 minutes, the dogs were euthanized with an IV overdose of pentobarbital (140 mg kg(-1)) and both venous plasma and CNS tissues (brain, cervical and lumbar spinal cord) were harvested. Concentrations of dexmedetomidine, levomedetomidine and vatinoxan in all samples were quantified by liquid chromatography-tandem mass spectrometry and data were analyzed with nonparametric tests with post hoc corrections where appropriate. Results All dogs became deeply sedated after the treatment. The CNS-to-plasma ratio of vatinoxan concentration was approximately 1:50, whereas the concentrations of dexmedetomidine and levomedetomidine in the CNS were three- to seven-fold of those in plasma. Conclusions and clinical relevance With the doses studied, these results confirm the peripheral selectivity of vatinoxan in dogs, when coadministered IV with medetomidine. Thus, it is likely that vatinoxan preferentially antagonizes alpha(2)-adrenoceptors outside the CNS.Peer reviewe

    Investigation of the effects of vatinoxan on somatic and visceral antinociceptive efficacy of medetomidine in dogs

    Get PDF
    OBJECTIVE To determine whether concurrent vatinoxan administration affects the antinociceptive efficacy of medetomidine in dogs at doses that provide circulating dexmedetomidine concentrations similar to those produced by medetomidine alone. ANIMALS 8 healthy Beagles. PROCEDURES Dogs received 3 IV treatments in a randomized crossover-design trial with a 2-week washout period between experiments (medetomidine [20 mu g/kg], medetomidine [20 mu g/kg] and vatinoxan [400 mu g/kg], and medetomidine [40 mu g/kg] and vatinoxan [800 mu g/kg]; M20, M20V400, and M40V800, respectively). Sedation, visceral and somatic nociception, and plasma drug concentrations were assessed. Somatic and visceral nociception measurements and sedation scores were compared among treatments and over time. Sedation, visceral antinociception, and somatic antinociception effects of M20V400 and M40V800 were analyzed for noninferiority to effects of M20, and plasma drug concentration data were assessed for equivalence between treatments. RESULTS Plasma dexmedetomidine concentrations after administration of M20 and M40V800 were equivalent. Sedation scores, visceral nociception measurements, and somatic nociception measurements did not differ significantly among treatments within time points. Overall sedative effects of M20V400 and M40V800 and visceral antinociceptive effects of M40V800 were non inferior to those produced by M20. Somatic antinociception effects of M20V400 at 10 minutes and M40V800 at 10 and 55 minutes after injection were noninferior to those produced by M20. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested coadministration with vatinoxan did not substantially diminish visceral antinociceptive effects of medetomidine when plasma dexmedetomidine concentrations were equivalent to those produced by medetomidine alone. For somatic antinociception, noninferiority of treatments was detected at some time points.Peer reviewe
    corecore