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Abstract 

Objectives To quantify the peripheral selectivity of vatinoxan (L-659,066, MK-467) in dogs 

by comparing the concentrations of vatinoxan, dexmedetomidine and levomedetomidine in 



plasma and central nervous tissue (CNS) after intravenous (IV) co-administration of 

vatinoxan and medetomidine. 

Study design Experimental, observational study. 

Animals A group of six healthy, purpose-bred Beagle dogs (four females, two males) aged 

6.5 ± 0.1 years (mean ± standard deviation). 

Methods All dogs were administered a combination of medetomidine (40 µg kg−1) and 

vatinoxan (800 µg kg−1) as IV bolus. After 20 minutes, the dogs were euthanized with an IV 

overdose of pentobarbital (140 mg kg−1) and both venous plasma and CNS tissues (brain, 

cervical and lumbar spinal cord) were harvested. Concentrations of dexmedetomidine, 

levomedetomidine and vatinoxan in all samples were quantified by liquid chromatography–

tandem mass spectrometry and data were analyzed with nonparametric tests with post hoc 

corrections where appropriate. 

Results All dogs became deeply sedated after the treatment. The CNS:plasma ratio of 

vatinoxan concentration was approximately 1:50, whereas the concentrations of dex- and 

levomedetomidine in the CNS were three to seven-fold those in plasma. 

Conclusions and clinical relevance With the doses studied, these results confirm the 

peripheral selectivity of vatinoxan in dogs, when co-administered IV with medetomidine. 

Thus, it is likely that vatinoxan preferentially antagonizes α2-adrenoceptors outside the CNS. 

 

Keywords central nervous system, distribution, dog, medetomidine, MK-467, vatinoxan.  

  



Introduction 

Vatinoxan (formerly known as L-659,066 and MK-467), is an α2-adrenoceptor antagonist 

originally introduced as being peripherally selective as a result of its limited penetration 

across the mammalian blood-brain-barrier into the central nervous system (CNS) 

(Clineschmidt et al. 1988). In the last decade, renewed interest in its potential to prevent the 

peripheral, while preserving the central effects of α2-adrenoceptor agonists, has been the 

subject of numerous studies investigating cardiopulmonary, sedative and metabolic outcomes 

in several species. In brief, vatinoxan has been shown to either attenuate or prevent the 

cardiovascular effects of various α2-adrenoceptor agonists in dogs (Pagel et al. 1998; Enouri 

et al. 2008; Honkavaara et al. 2008, 2011; Rolfe et al. 2012), horses (Bryant et al. 1998; de 

Vries et al. 2016; Tapio et al. 2018), sheep (Bryant et al. 1998; Raekallio et al. 2010: Adam et 

al. 2018) and cats (Pypendop et al. 2017a; Siao et al. 2017). Moreover, its impact on agonist-

induced sedation appears to be minor and more related to alteration on the disposition of co-

administered agonists drugs through attenuation of their cardiovascular effects (Vainionpaa et 

al. 2013; Bennett et al. 2016; Restitutti et al. 2017; Adam et al. 2018; Pypendop et al. 2016, 

2017b; Honkavaara et al. 2017a, b). However, to date, direct evidence of the inability of 

vatinoxan to cross the mammalian blood-brain barrier in vivo only exists for rats and 

marmosets (Clineschmidt et al. 1988). In that study, the concentration of vatinoxan in brain 

tissue was shown to be a small fraction of that in plasma. On the other hand, the 

concentration of medetomidine was substantially higher in rat brain than in plasma after 

subcutaneous (SC) administration (Salonen 1989). To that effect, and as vatinoxan is 

presently being considered for market authorization in dogs, it would be of importance to 

confirm its peripheral selectivity in this species. Furthermore, in a recent study by Hector et 

al. (2017), vatinoxan unexpectedly increased the minimum alveolar concentration (MAC) of 

sevoflurane in dogs, an effect speculated to be related to possible CNS penetration by the 



drug. More recently, similar findings were also reported in cats (Pypendop et al. 2019). As 

the beneficial effects of α2-adrenoceptor agonists, namely sedation, antinociception and 

anaesthetic-sparing are mediated at the level of the CNS (Doze et al. 1989; Guo et al. 1996; 

Kita et al. 2000), significant distribution of vatinoxan across the canine blood-brain barrier 

would potentially decrease its clinical appeal. Hence, we aimed to investigate the extent of its 

CNS distribution after intravenous (IV) co-administration with medetomidine in dogs. We 

hypothesized that 20 minutes after treatment administration, the concentration of vatinoxan in 

plasma would far exceed that of the CNS, whereas the concentrations of medetomidine 

enantiomers, dex- and levomedetomidine, would be higher in the CNS compared with 

plasma. 

 

Material and methods 

Animals, drugs and study protocol 

The study was conducted in accordance with Directive 2010/63/EU and approved by the 

National Animal Experimentation Board of Finland (permit ID no. ESAVI-2010-

04178/Ym23). A group of six research Beagle dogs (four females, two males), scheduled for 

euthanasia for reasons unrelated to this study, were used. The dogs were considered healthy 

based on recent clinical and neurological examinations, complete blood counts and serum 

chemistry. They were housed in a kennel as a single group and fed a commercial diet with 

free access to water. Mean ± standard deviation (SD) age and weight were 6.5 ± 0.1 years 

and 12.5 ± 1.4 kg, respectively. A 20 gauge catheter (Terumo Europe N.V., Belgium) was 

aseptically placed in the lateral saphenous vein for drug administration. Each dog was 

administered a combination of medetomidine (40 µg kg−1; Dorbene, 1 mg mL−1; Laboratories 

Syva, Spain) and vatinoxan (800 µg kg−1; Vetcare Ltd, Finland) as a rapid IV bolus followed 

by 5 mL of 0.9 % sterile saline.  



Vatinoxan was obtained as a powder, which was dissolved in sterile isotonic saline to 

a final concentration of 10 mg mL−1 prior to mixing it with medetomidine in a single syringe 

The authors have not observed macroscopic physicochemical interactions between the 

formulations at these concentrations in previous studies. At 20 minutes after treatment 

administration, 6 mL of blood was collected from the jugular vein. The blood sample was 

transferred to tubes containing ethylenediamine tetra-acetic acid and pre-chilled in iced 

water. Plasma was separated by refrigerated centrifugation (4 °C, 2520 g for 15 minutes) and 

stored at –80 °C awaiting drug concentration analyses.  

Immediately after collecting the blood sample, the dog was euthanized with an 

overdose of pentobarbital (140 mg kg−1; Euthasol, 400 mg mL−1; Le Vet BV, The 

Netherlands) IV. The CNS was completely removed promptly after confirming cessation of 

heart beats by thoracic auscultation. Cross-sectional fresh tissue samples of both the lumbar 

and cervical spinal intumescence and bilaterally of the frontal cortex were immediately 

frozen in liquid nitrogen and stored at –80 °C until analyzed. The dura mater was opened and 

any remaining spinal fluid removed with an absorbent, non-pilling gauze prior to freezing the 

spinal samples. Exsanguination was not attempted prior to harvesting the tissues. 

Macroscopic post-mortem examinations were performed on each dog after the procedures. 

 

Drug concentration analyses 

Plasma samples were analyzed for dexmedetomidine, levomedetomidine and vatinoxan 

concentrations by liquid chromatography–tandem mass spectrometry (LC–MS/MS) as 

previously described in dogs (Honkavaara et al. 2012). For the tissue samples, analytical 

reference standards for dexmedetomidine and levomedetomidine were purchased from 

Toronto Research Chemicals (ON, Canada) and vatinoxan was provided by Vetcare Ltd. 

Calibrator and quality control stock solutions of dexmedetomidine and levomedetomidine 



were prepared in methanol and vatinoxan was prepared in 9:1 (v:v) acetronitrile (ACN) and 

water, all at 1 mg mL−1 free base. The internal standards d4-hydroxydetomidine (d4OHD) 

and 2-(1-hydroxyethyl) promazine sulfoxide (HEPS) were purchased from Frontier 

BioPharm (KY, USA) as 0.1 mg mL−1 stocks in methanol. Acetronitrile and water were 

purchased from Burdick and Jackson (MI, USA).  Methanol, methyl tertbutyl ether (MTBE) 

and buffer reagents were purchased from Fisher Scientific (NJ, USA). Diethylamine (DEA) 

was from Sigma Aldrich (MO, USA). The solvents were high-performance liquid 

chromatography grade or better. 

For analysis, dexmedetomidine, levomedetomidine and vatinoxan were combined into 

one working solution. Working solutions were prepared by diluting the 1 mg mL−1 stock 

solutions with methanol to concentrations of 0.01, 0.1, 1, 10 and 100 ng µL−1. Calibrators 

were prepared at concentrations ranging from 0.1 ng mL−1 to 2000 ng mL−1.  Samples for 

both calibration curves and negative controls were prepared fresh for each quantitative assay. 

In addition, quality control samples (at two levels within the standard curve) were included 

with each set of samples as an additional check of accuracy.  

Approximately 230–890 mg of tissue was weighed into 7 mL Precellys hard tissue 

homogenizing vials (Bertin Corp., MD, USA) and placed in –20 ºC for 10 minutes before 

being homogenized at 510 g for 30 seconds in a Precellys 24 tissue homogenizer (Bertin 

Corp.), followed by a 5-minute cool down period.  One mL of ACN containing d4OHD and 

HEPS at 100 ng mL−1 was added and the samples were homogenized again. The 

homogenized solution was centrifuged at 15,000 g for 2 minutes and 0.5 mL was transferred 

to a 13×100 mm glass tube and dried under nitrogen at 45 ºC. 

Samples were re-dissolved with 500 µL of water and 100 µL of 5% ammonium 

hydroxide in a saturated sodium chloride solution before adding 3 mL of MTBE.  Samples 

were mixed by rotation for 20 minutes at 40 revolutions per minute.  After rotation, samples 



were centrifuged at 2260 g for 5 minutes at 4 ºC and the top organic layer was transferred to a 

glass tube. Samples were then dried under nitrogen at 45 ºC and dissolved in 200 µL of 20 

mM ammonium formate with 0.1% DEA. The injection volume into the LC–MS/MS system 

was 10 µL. 

The concentration of dexmedetomidine, levomedetomidine and vatinoxan were 

measured in tissue by LC–MS/MS using positive heated electrospray ionization [HESI(+)] at 

a temperature of 300 ºC. Quantitative analysis was performed on a TSQ Vantage triple 

quadrupole mass spectrometer (Thermo Scientific, CA, USA) coupled with a turbulent flow 

chromatography system (TFC TLX2; Thermo Scientific) having LC-10ADvp liquid 

chromatography systems (Shimadzu, Japan) and operated in laminar flow mode. The spray 

voltage was 3500V, the sheath and auxiliary gas were 45 and 30 arbitrary units, respectively. 

Product masses and collision energies of each analyte were optimized by infusing the 

analytes into the mass spectrometer. Two injections of each sample were done, one for 

vatinoxan and another for separation of dexmedetomidine/levomedetomidine. For analysis of 

vatinoxan, chromatography employed an ACE 3 C18 10 cm × 2.1 mm 3 µm column (MAC-

MOD Analytical Inc., PA, USA) and a linear gradient of methanol and 20 mM ammonium 

formate with 0.1% DEA, at a flow rate of 0.35 mL minute−1.  The initial methanol 

concentration was held at 5% for 20 seconds, ramped to 99% over 5 minutes, held at that 

concentration for 40 seconds, before re-equilibrating at the initial conditions for another 240 

seconds.  For dexmedetomidine/levomedetomidine analysis, chromatography employed a 

Lux cellulose 15 cm × 2.1 mm 3 µm column (Phenomenex Inc., CA, USA).  The isocratic 

method used the same mobile phases described above at a constant 55% methanol for 6 

minutes and 40 seconds. 

Detection and quantification were conducted using selective reaction monitoring of 

initial precursor ion for dexmedetomidine [mass to charge ratio (m z−1) 201.1], vatinoxan (m 



z−1 419.2), levomedetomidine (m z−1 201.1), internal standards d4OHD (m z−1 207.1) and 

HEPS (m z−1 345.1). The response for the product ions for dexmedetomidine (m z−1 68.2, 

95.1), levomedetomidine (m z−1 68.2, 95.1), vatinoxan (m z−1 199.9, 237.9, 281), d4OHD (m 

z−1 81.1, 189.1), and HEPS (m z−1 58.1, 86, 242.9) were plotted and peaks at the proper 

retention time integrated using Quanbrowser software (Thermo Scientific).   The same 

software was used to generate calibration curves and quantitate dexmedetomidine, 

levomedetomidine and vatinoxan in all samples. A weighting factor of 1/X was used for all 

calibration curves. 

Quality control samples were included as an additional check of accuracy. Accuracy 

ranged from 89 to 107 % and imprecision from 3 to 6 % for all analytes. The technique was 

optimized to provide a limit of quantitation of 0.5 ng mL−1 for both dexmedetomidine and 

levomedetomidine and 0.1 ng mL−1 for vatinoxan. The limit of detection was approximately 

0.2 ng mL−1 for both dexmedetomidine and levomedetomidine and 0.05 ng mL−1 for 

vatinoxan. 

 

Statistical analysis 

Statistical analyses were performed with JMP Pro 12 (SAS Institute, NC, USA). A power 

analysis was not performed as the number of available animals was dictated by reasons 

unrelated to this study. Since the number of samples was small, nonparametric tests were 

used. The calculated tissue:plasma ratios were compared between vatinoxan and dex- and 

levomedetomidine with Friedman’s test, followed by a one-tailed Wilcoxon’s Rank Sum test 

and a Bonferroni post hoc correction. The plasma and tissue concentrations between dex- and 

levomedetomidine were compared by a two-tailed Wilcoxon Rank Sum Test. The alpha-level 

for significance was set at 0.05. Results are expressed as median (range) or mean ± SD. 

 



Results 

All dogs became profoundly sedated after the treatment and spontaneously remained in 

lateral recumbency until euthanized. The concentrations for dexmedetomidine, 

levomedetomidine and vatinoxan and the calculated ratios between plasma versus brain and 

cervical and lumbar spinal cord are summarized in Table 1. The concentration of vatinoxan in 

the CNS samples was approximately 2% of that measured in plasma, with no significant 

differences between brain and either of the spinal cord tissues. Whereas the concentrations of 

dexmedetomidine, levomedetomidine and vatinoxan in the CNS were not significantly 

different from each other, the CNS:plasma ratios for dex- and levomedetomidine were 

significantly higher than for vatinoxan (p < 0.05). No macroscopic findings indicating disease 

were present within the CNS or other examined organs in the dogs.  

 

Discussion 

This study provided direct evidence of the peripheral selectivity of vatinoxan in dogs, as the 

concentration in plasma far exceeded concentrations in the CNS tissue. The results for the 

brain:plasma ratios were  similar to those originally reported for marmosets (0.038), when 

concentrations were measured 20 minutes after IV administration of 10 mg kg−1 of vatinoxan 

(Clineschmidt et al. 1988). In that same study, the brain:plasma ratio for rats administered 

57.5 mg kg−1 of vatinoxan IV with the same presampling interval was comparable, although 

consistently somewhat higher (0.06) than in marmosets or the dogs in the present 

investigation (0.02). Nevertheless, the outcomes of these studies appear remarkably 

consistent, regardless of species, doses or the fact that the dogs were also administered 

medetomidine. Consequently, the results in this study indicate that, similarly to rats and 

marmosets, vatinoxan is peripherally selective in its distribution in dogs. However, the results 

do not confirm lack of pharmacological action at the level of the CNS. Even though the 



concentrations of vatinoxan in the CNS were only a fraction of those in plasma, they were 

approximately similar to the concentrations of the active dextroisomer in all the sampled 

tissues. Although it has been reported that plasma concentration ratios 

(vatinoxan:medetomidine) ≥ 18:1 were required to effectively attenuate the cardiovascular 

depression induced by medetomidine in isoflurane-anesthetized dogs (Kaartinen et al. 2014), 

no such ratio has been suggested for effects in the CNS. As the relative affinity of vatinoxan 

and dexmedetomidine on α2-adrenoceptors is not known, the concentration of vatinoxan 

needed to relevantly inhibit the pharmacological effects of dexmedetomidine at the receptor 

site remains to be defined for the relevant α2-adrenoceptor subclasses. Consequently, more 

detailed studies would be required to better define whether effects such as the increase seen 

in the MAC of sevoflurane in dogs is related to a central or peripheral action (Hector et al. 

2017). The study population was homogenous, representing only a small group of healthy 

dogs of a single breed. Thus, pharmacogenetic variation in, for example, efflux mechanisms 

across the blood-brain barrier or distribution of α2-adrenoceptors may alter the dose-response 

to vatinoxan.  

    Vatinoxan increases the volume of distribution of dexmedetomidine in dogs and cats 

after IV co-administration (Honkavaara et al. 2012; Pypendop et al. 2016). The tissue 

concentrations in the current study represent only one time point and it is unknown if the 

concentrations subsequently increased or decreased. However, the exposure to dex- and 

levomedetomidine within the CNS was three- to seven-fold higher than in plasma at that 

time. A similar ratio (peak five-fold radioactivity in CNS compared with plasma) was 

documented in rats 20 minutes after SC administration of 80 µg kg−1 radiolabeled racemic 

medetomidine (Salonen 1989). A five to seven-fold radioactivity, brain to plasma, was 

measured after IV administration of 20 µg kg−1 radiolabeled dexmedetomidine to rats 

(European Medicines Agency 2005). In the present study, although concentrations of 



vatinoxan and both agonist isomers were higher in the brain than in the spinal cord segments, 

the differences did not reach statistical significance. However, the brain:plasma concentration 

ratio of levomedetomidine was significantly higher than that of dexmedetomidine, largely 

related to the consistent but insignificant lower plasma concentrations of the levoisomer. This 

phenomenon, which is not easily explained, is in line with a recent study where 

administration of racemic medetomidine appeared to result in higher relative plasma 

exposure to dexmedetomidine in dogs (Bennett et al. 2016). 

    There were some major limitations to this study. First, the study design was unable to 

include treatments with vatinoxan and medetomidine alone, therefore the results may not 

accurately describe the distribution of either drug when administered without the other. 

Nonetheless, it is unlikely that vatinoxan would be administered alone in a clinical scenario. 

Second, because the methods required invasive tissue sampling, only a single time point was 

possible for comparisons between tissue and plasma drug concentrations. Therefore, the time 

of sampling at 20 minutes was chosen to enable comparisons with earlier studies in other 

species, vatinoxan concentrations in rats and marmosets (Clineschmidt et al. 1988) and 

medetomidine concentration in rats (Salonen 1989). Furthermore, this time point 

approximately coincides with the maximal sedative effects of both IV medetomidine and 

dexmedetomidine in dogs, regardless of the presence of vatinoxan (Honkavaara et al. 2008; 

Rolfe et al. 2012). Third, the CNS is highly perfused by an extensive transmeningeal 

microvasculature. Hence, exsanguination prior to tissue collection may have provided more 

accurate effect-site drug concentrations. By contrast, contamination of the tissue samples 

with blood would have increased the vatinoxan concentration artificially, falsely increasing 

the CNS:plasma concentration ratios. 

 

Conclusion 



Vatinoxan was shown to be peripherally selective in dogs after IV co-administration with 

medetomidine. Therefore, the results of this study further support the use of vatinoxan with 

α2-adrenoceptor agonists to attenuate their negative infraspinal effects.  
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Table 1 Concentrations of dexmedetomidine, levomedetomidine and vatinoxan in plasma, 

brain and cervical and lumbar spinal cord and the calculated concentration ratios for 

brain:plasma, cervical spine:plasma and lumbar spine:plasma in six dogs 20 minutes after 

administration of medetomidine (40 µg kg−1) and vatinoxan (800 µg kg−1) intravenously.  

Parameter Dexmedetomidine Levomedetomidine Vatinoxan 

Plasma (ng mL−1) 6.8 (5.0 – 7.8) 4.1 (3.4 – 5.2) 1380 (701 – 2440) 

Brain (ng g−1) 29.9 (27.1 – 39.7) 28.2 (22.0 – 37.3) 27.5 (15.6 – 44.3) 

Cervical Spine (ng g−1) 23.3 (17.8 – 31.2) 18.5 (15.4 – 27.8) 17.2 (12.7 – 20.6) 

Lumbar spine (ng g−1) 22.0 (14.5 – 31.3) 17.8 (12.9 – 31.0) 20.0 (12.4 – 28.3) 

Brain:plasma (ratio) 4.6 (4.3 – 6.9)* 7.2 (5.5 – 7.9)*† 0.02 (0.01 – 0.04) 

Cervical spine:plasma 

(ratio) 
3.5 (2.5 – 5.4)* 4.7 (3.5 – 5.4)* 0.01 (0.01 – 0.03) 

Lumbar spine:plasma 

(ratio) 
3.4 (2.4 – 4.6)* 4.4 (3.2 – 6.0)* 0.02 (0.01 – 0.02) 

Data are expressed as median (range). *Significantly different from vatinoxan (p < 0.05). 

†Significantly different from dexmedetomidine (p < 0.05). 

 


