196 research outputs found

    Zinc inhibits TRPV1 to alleviate chemotherapy-induced neuropathic pain

    Get PDF
    Zinc is a transition metal that has a long history of use as an anti-inflammatory agent. It also soothes pain sensations in a number of animal models. However, the effects and mechanisms of zinc on chemotherapy-induced peripheral neuropathy remain unknown. Here we show that locally injected zinc markedly reduces neuropathic pain in male and female mice induced by paclitaxel, a chemotherapy drug, in a TRPV1-dependent manner. Extracellularly applied zinc also inhibits the function of TRPV1 expressed in HEK293 cells and mouse DRG neurons, which requires the presence of zinc-permeable TRPA1 to mediate entry of zinc into the cytoplasm. Moreover, TRPA1 is required for zinc-induced inhibition of TRPV1-mediated acute nociception. Unexpectedly, zinc transporters, but not TRPA1, are required for zinc-induced inhibition of TRPV1-dependent chronic neuropathic pain produced by paclitaxel. Together, our study demonstrates a novel mechanism underlying the analgesic effect of zinc on paclitaxel-induced neuropathic pain that relies on the function of TRPV1

    A review of enhancement of biohydrogen productions by chemical addition using a supervised machine learning method

    Get PDF
    In this work, the impact of chemical additions, especially nano‐particles (NPs), was quan-titatively analyzed using our constructed artificial neural networks (ANNs)‐response surface methodology (RSM) algorithm. Fe‐based and Ni‐based NPs and ions, including Mg2+, Cu2+, Na+, NH4+, and K+, behave differently towards the response of hydrogen yield (HY) and hydrogen evolution rate (HER). Manipulating the size and concentration of NPs was found to be effective in enhancing the HY for Fe‐based NPs and ions, but not for Ni‐based NPs and ions. An optimal range of particle size (86–120 nm) and Ni‐ion/NP concentration (81–120 mg L−1) existed for HER. Meanwhile, the manipulation of the size and concentration of NPs was found to be ineffective for both iron and nickel for the improvement of HER. In fact, the variation in size of NPs for the enhancement of HY and HER demonstrated an appreciable difference. The smaller (less than 42 nm) NPs were found to definitely improve the HY, whereas for the HER, the relatively bigger size of NPs (40–50 nm) seemed to significantly increase the H2 evolution rate. It was also found that the variations in the concentration of the investigated ions only statistically influenced the HER, not the HY. The level of response (the enhanced HER) towards inputs was underpinned and the order of significance towards HER was identified as the following: Na+ \u3e Mg2+ \u3e Cu2+ \u3e NH4+ \u3e K+

    A peanut and weed detection model used in fields based on BEM-YOLOv7-tiny

    Get PDF
    Due to the different weed characteristics in peanut fields at different weeding periods, there is an urgent need to study a general model of peanut and weed detection and identification applicable to different weeding periods in order to adapt to the development of mechanical intelligent weeding in fields. To this end, we propose a BEM-YOLOv7-tiny target detection model for peanuts and weeds identification and localization at different weeding periods to achieve mechanical intelligent weeding in peanut fields at different weeding periods. The ECA and MHSA modules were used to enhance the extraction of target features and the focus on predicted targets, respectively, the BiFPN module was used to enhance the feature transfer between network layers, and the SIoU loss function was used to increase the convergence speed and efficiency of model training and to improve the detection performance of the model in the field. The experimental results showed that the precision, recall, mAP and F1 values of the BEM-YOLOv7-tiny model were improved by 1.6%, 4.9%, 4.4% and 3.2% for weed targets and 1.0%, 2.4%, 2.2% and 1.7% for all targets compared with the original YOLOv7-tiny. The experimental results of positioning error show that the peanut positioning offset error detected by BEM-YOLOv7-tiny is less than 16 pixels, and the detection speed is 33.8 f/s, which meets the requirements of real-time seedling grass detection and positioning in the field. It provides preliminary technical support for intelligent mechanical weeding in peanut fields at different stages

    Interfacial “Single‐Atom‐in‐Defects” Catalysts Accelerating Li + Desolvation Kinetics for Long‐Lifespan Lithium‐Metal Batteries

    Get PDF
    The lithium-metal anode is a promising candidate for realizing high-energy-density batteries owing to its high capacity and low potential. However, several rate-limiting kinetic obstacles, such as the desolvation of Li+ solvation structure to liberate Li+^+, Li0^0 nucleation, and atom diffusion, cause heterogeneous spatial Li-ion distribution and fractal plating morphology with dendrite formation, leading to low Coulombic efficiency and depressive electrochemical stability. Herein, differing from pore sieving effect or electrolyte engineering, atomic iron anchors to cation vacancy-rich Co1xS_{1−xS} embedded in 3D porous carbon (SAFe/CVRCS@3DPC) is proposed and demonstrated as catalytic kinetic promoters. Numerous free Li ions are electrocatalytically dissociated from the Li+^+ solvation complex structure for uniform lateral diffusion by reducing desolvation and diffusion barriers via SAFe/CVRCS@3DPC, realizing smooth dendrite-free Li morphologies, as comprehensively understood by combined in situ/ex situ characterizations. Encouraged by SAFe/CVRCS@3DPC catalytic promotor, the modified Li-metal anodes achieve smooth plating with a long lifespan (1600 h) and high Coulombic efficiency without any dendrite formation. Paired with the LiFePO4_4 cathode, the full cell (10.7 mg cm2^{−2}) stabilizes a capacity retention of 90.3% after 300 cycles at 0.5 C, signifying the feasibility of using interfacial catalysts for modulating Li behaviors toward practical applications

    Polysulfide-mediated solvation shell reorganization for fast Li+ transfer probed by in-situ sum frequency generation spectroscopy

    Get PDF
    Understanding of interfacial Li+^+ solvation shell structures and dynamic evolution at the electrode/electrolyte interface is requisite for developing high-energy-density Li batteries. Herein, the reorganization of Li+^+ solvation shell at the sulfur/electrolyte interface along with the presence of a trace amount of lithium polysulfides is verified by in-situ sum frequency generation (SFG) spectroscopy together with density functional theory (DFT) calculations. Both the spectroelectrochemical and DFT calculation results reveal a strongly competitive anion adsorption of the polysulfide anion additive against the pristine electrolyte anion on the sulfur cathode surface, reorganizing the interfacial local solvation shell structure facilitating rapid Li ion transfer and conduction. Meanwhile, the evolution of the SFG signals along with the discharging/charging cycle exhibits improved reversibility, indicating the transformation of the inner Helmholtz plane layer into a stable molecular-layer polysulfide interphase rather than a dynamic diffusion layer. Consequently, applications in practical Li-S batteries reveal the capacity and cycling stability of the corresponding cells are significantly enhanced. Our work provides a methodology using in-situ SFG for probing solvation reorganization of charge carriers at electrochemical interfaces

    Accelerated Li⁺ Desolvation for Diffusion Booster Enabling Low‐Temperature Sulfur Redox Kinetics via Electrocatalytic Carbon‐Grazfted‐CoP Porous Nanosheets

    Get PDF
    Lithium–sulfur (Li–S) batteries are famous for their high energy density and low cost, but prevented by sluggish redox kinetics of sulfur species due to depressive Li ion diffusion kinetics, especially under low-temperature environment. Herein, a combined strategy of electrocatalysis and pore sieving effect is put forward to dissociate the Li+ solvation structure to stimulate the free Li+ diffusion, further improving sulfur redox reaction kinetics. As a protocol, an electrocatalytic porous diffusion-boosted nitrogen-doped carbon-grafted-CoP nanosheet is designed via forming the NCoP active structure to release more free Li+ to react with sulfur species, as fully investigated by electrochemical tests, theoretical simulations and in situ/ex situ characterizations. As a result, the cells with diffusion booster achieve desirable lifespan of 800 cycles at 2 C and excellent rate capability (775 mAh g−1 at 3 C). Impressively, in a condition of high mass loading or low-temperature environment, the cell with 5.7 mg cm−2 stabilizes an areal capacity of 3.2 mAh cm−2 and the charming capacity of 647 mAh g−1 is obtained under 0 °C after 80 cycles, demonstrating a promising route of providing more free Li ions toward practical high-energy Li–S batteries

    Three-Dimensional Manganese Oxide@Carbon Networks as Free-Standing, High-Loading Cathodes for High-Performance Zinc-Ion Batteries

    Get PDF
    Zinc-ion batteries (ZIBs), which are inexpensive and environmentally friendly, have a lot of potential for use in grid-scale energy storage systems, but their use is constrained by the availability of suitable cathode materials. MnO2-based cathodes are emerging as a promising contenders, due to the great availability and safety, as well as the device's stable output voltage platform (1.5 V). Improving the slow kinetics of MnO2-based cathodes caused by low electrical conductivity and mass diffusion rate is a challenge for their future use in next-generation rapid charging devices. Herein, the aforementioned challenges are overcome by proposing a sodium-intercalated manganese oxide (NMO) with 3D varying thinness carbon nanotubes (VTCNTs) networks as appropriate free-standing, binder-free cathodes (NMO/VTCNTs) without any heat treatment. A network construction strategy based on CNTs of different diameters is proposed for the first time to provide high specific capacity while achieving high mass loading. The specific capacity of as-prepared cathodes is significantly increased. The resulting free-standing binder-free cathodes achieve excellent capacity (329 mAh g−1 after 120 cycles at 0.2 A g−1 and 225 mAh g−1 after 200 cycles at 1 A g−1) and long-term cycling stability (158 mAh g−1 at 2 A g−1 after 1000 cycles)
    corecore