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Abstract: In this work, the impact of chemical additions, especially nano-particles (NPs), was
quantitatively analyzed using our constructed artificial neural networks (ANNs)-response surface
methodology (RSM) algorithm. Fe-based and Ni-based NPs and ions, including Mg2+, Cu2+, Na+,
NH4

+, and K+, behave differently towards the response of hydrogen yield (HY) and hydrogen
evolution rate (HER). Manipulating the size and concentration of NPs was found to be effective in
enhancing the HY for Fe-based NPs and ions, but not for Ni-based NPs and ions. An optimal range of
particle size (86–120 nm) and Ni-ion/NP concentration (81–120 mg L−1) existed for HER. Meanwhile,
the manipulation of the size and concentration of NPs was found to be ineffective for both iron and
nickel for the improvement of HER. In fact, the variation in size of NPs for the enhancement of HY
and HER demonstrated an appreciable difference. The smaller (less than 42 nm) NPs were found
to definitely improve the HY, whereas for the HER, the relatively bigger size of NPs (40–50 nm)
seemed to significantly increase the H2 evolution rate. It was also found that the variations in the
concentration of the investigated ions only statistically influenced the HER, not the HY. The level of
response (the enhanced HER) towards inputs was underpinned and the order of significance towards
HER was identified as the following: Na+ > Mg2+ > Cu2+ > NH4

+ > K+.

Keywords: biohydrogen (BioH2); nanoparticles; quantitative assessment; artificial neuron networks;
process intensifications

1. Introduction

The further rollback of globalization will ultimately reshape the current supply chain
block, especially as more and more countries have realized how pivotal it is to have self-
sufficient industries to produce strategic products such as medicine, energy, and even
toilet paper rolls [1]. Aside from the public health emergency, energy security is another
draconian challenge that countries across the world are reluctantly facing, although the
price of crude oil did once plunge to USD 25 per barrel (158.98 L) in the middle of 2020
during the COVID-19 pandemic [2]. Whether to take bolder steps in the energy reliance
transition from fossil fuel to renewable energy will make a great difference in the world
that our children will be able to inherit in the future [3]. Consequently, by 2021, several
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developed countries already started to restrict the use of fossil fuels in order to eventually
achieve a shift in fuel type [4,5].

Among all sources of energy, hydrogen (H2) is one of the most favorable candidates
due to its inherent appealing features: (1) high energy yield (122 kJ kg−1), (2) generation of
water as a result of combustion, and (3) electricity generation through the fuel cell [6,7].
However, the current predominant H2 generation still comes from fossil-based materials
via existing mature industrial chemical processes such as natural gas steam reforming
(NGSR), nature gas thermal cracking (NGTC), auto-thermal reforming (ATR), coal gasi-
fication, and partial oxidation of heavier-than-naphtha hydrocarbons [8]. Consequently,
the paradox of sustainability of H2 utilization and the non-renewability of H2 generation
will be encountered, although the development of carbon capture storage and utilization
(CCSU) such as via a mature catalytic process like Fischer–Tropsch synthesis might alleviate
environmental impacts from H2 generation [9–12].

Apart from the thermal process, the biological hydrogen (BioH2) generation process
also plays a supplementary role in H2 generation due to features such as versatile feed-
stock (lignocellulose, wet kitchen organic waste, and wastewater) and no green-house gas
emissions (GHE). Despite the appealing advantages that are mentioned above, BioH2 pro-
duction is hampered by its relatively lower process performance [13]. To implement BioH2
in different applications either on a decentralized or centralized basis or both, different
process intensification approaches have been proposed, such as hydrolysate detoxifica-
tion, mixed continuous and batch operations, co-fermentation, process optimization, and
chemical addition. Among these approaches, chemical addition is considered to be one
of the most attractive and practical ones because of its operational simplicity (without
any additional modifications) and relatively low energy consumption [14]. However, cur-
rent reports are limited to focusing on the facilitation of BioH2 production by all types of
chemical additives. In contrast, the nanoparticles (NPs) as a potential type of chemical ad-
ditive still lack research on their addition and the corresponding quantitative relationships,
such as hydrogen yield (HY) and hydrogen evolution rate (HER) with detailed incubation
conditions, especially the concentration of different metal elements.

In this paper, instead of making a simple BioH2 production enhancement comparison
using the addition of NPs across literature reports, the collected data (such as HY, HER, and
the substrate concentrations from literature works) were used to construct the data matrix
for supervised machine learning algorithm using the developed artificial neural networks
(ANNs) coupled with statistical analysis using response surface methodology (RSM) for
more insightful and quantitative correlations and analysis. The review of assessing the
impact of NPs additions on BioH2 production in form of HY and HER using a developed
ANNs-RSM algorithm, to the best of our knowledge, has not been reported before.

2. Materials and Methods

The literature used in this review was mainly collected from the scientific databases
from Web of Science, Google Scholar and Science Direct via keyword search. Various
keyword groups were comprised of several words, including “dark fermentation,” “biohy-
drogen,” and “nanoparticles.” With regard to the possible missing relevant literature, by
using the abovementioned searching strategy, an extensive additional search process
was conducted with more detailed keywords, including “trace metal,” “transitional
metal,” “iron,” “nickel,” “gold,” “copper,” and “metal oxide.” During the additional search,
these mentioned keywords were also combined with the keyword “biohydrogen.”

The ANNs (based on Python 2.7 platform) was deployed for data analysis. The
detailed schematic diagram of the construction of the ANNs and data collection is shown
in Figure S1. In this work, the widely used feed-forward three-layer networks were used.
The simplified cross-out method was used for cross-validation during the data training
step. The detailed descriptions of the standard procedures for this methodology can be
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found in our previous works [15]. During the data training, the mean square error (MSE)
and mean average relative residual (MARR) were computed as follows:

MSE% =
1

Nsam
∑Nsam

j=1

(
rsam

i − rcal
i

)2
× 100% (1)

MARR% =
1

Nsam
∑Nexp

j=1


∣∣∣rsam

i − rcal
i

∣∣∣
rsam

i

× 100% (2)

where Nsam is the number of data, and rsam
i and rcal

i are actual and calculated values,
respectively. The setting for allowable accuracy was 95%. For the ANNs prediction data
matrix, the widely used Box–Behnken design (BBD) and the central composite design
(CCD) were used to predict the data matrix generation [16]. Once the supervised data
learning was complete, the analysis of variation (ANOVA) based on commercial Design
Expert® Version 11 software package (Stat-Ease, Inc., Minneapolis, MN, USA) was used for
statistical analysis.

3. Literature Survey Comparisons

In this paper, for the convenience of discussion, four different types of NPs (Fe-based,
Au-based, Cu-based, and Ni-based) were surveyed across different studies and the results
are shown in Figure 1.
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Figure 1. Statistics of publications from Scopus and Google Scholar in regard to BioH2 production by
chemical nanoparticle additions.

For each type of NPs, taking Ni-based NPs, for instance, all nickel-related species were
included, such as nanoparticles such as zero-valent particles, metal oxide NiO2, etc. The
number of reports on the topic of BioH2 enhancement by NPs additions has been increasing
steadily since 2015. Among different NPs, the number of reports using iron-based NPs has
presented a discernible trend in recent years. The impetus underlining this trend is possibly
associated with its inherent appealing cost-effective feature compared to other NPs such as
gold or nickel. Apart from Fe-based NPs, Ni-based NPs have experienced an appreciable
increase in recent years, with an exception in 2015 [17,18]. The research interests that focus
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on Ni-based NPs might be pertinent to the metal cluster of hydrogenase [19]. According
to recent classifications, there are three different hydrogenases, namely, [Fe], [NiFe], and
[FeFe] [20,21]. During biological chemical reactions, these enzyme active centers play a
pivotal role in the metabolism of proton ion-associated redox reactions. Studies have shown
that [FeFe] hydrogenase catalyzes H2 generation, whereas [NiFe] hydrogenase catalyzes
the consumption of H2. [NiFe] hydrogenase presents a relatively higher tolerance to the
existence of oxygen and it widely exists in various types of microbial strains, whereas
[FeFe] hydrogenase is relatively strict to the presence of oxygen and only exists in some
algae and bacteria [22,23]. Regarding [Fe] hydrogenase, it only strictly exists in some
methanogen strains [24–26].

4. Underlying Mechanisms of Metal Ions and Metal-Based Nanoparticles

Many extensively studied metal ions and metal-based nanoparticles are regarded as
effective additives in culture medium to facilitate BioH2 production in the dark fermen-
tation process, including Na+, K+, NH4

+, Mg2+, Ca2+, Co2+, Zn2+, Cu2+, Fe2+/Fe3+, and
Ni2+/Ni3+, among others [27–29]. Extensive studies have found that even small changes in
the latter may have a significant impact on BioH2 production; hence, many strategies have
been proposed based on them, such as concentration regulation, including concentration
manipulation [30], size regulation [17,31], composites fabrication [23,32], and heteroatom
doping [33]. In general, the enhancement of NPs addition lies in a few important facts:
(i) the controllable release of mental ions that facilitates the passive transport across the
membrane [34]; (ii) nanodots that facilitate the electron transport chain during metabolism,
such as glycolysis [35]; and (iii) the appropriate level of NPs favorable to the hydrogenase
activities (co-enzymes often contain the metal ions in the catalysis center, which ultimately
enhances the rate of hydrogen generation [36]. The potential mechanisms of BioH2 en-
hancement are summarized in Figure 2. Therefore, in this part, this review will focus on
the impact of the latter on BioH2 production and its mechanisms.
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4.1. Fe-Based Ions and Nanoparticles

Iron is an important trace element in the formation of hydrogenases and other en-
zymes. The pre-addition of Fe in the culture medium is a widely used strategy to enhance
BioH2 production in dark fermentation [37]. As illustrated in Figure 2, first, Fe is the
essential element to form the metal content at the active sites of hydrogenase ([FeFe],
[FeNi], and [Fe]), thus catalyzing the reduction reaction of H+ to H2 [38]. Second, the
presence of Fe-based NPs improves the activity of ferredoxin oxidoreductase by reducing
the dissolved oxygen (DO) level and enhancing electron transfer due to the surface and
quantum size effects [39,40]. In addition, Fe-based components could participate in enrich-
ing the microbial community and enhancing the growth of H2-producing bacteria [41]. The
oxidative stress increases when there is a higher Fe concentration, which results in the for-
mation of abundant oxidative radicals, thus leading to the deactivation or decomposition
of enzymes [17,30].

4.2. Ni-Based Ions and Nanoparticles

Similarly, nickel ions or Ni-based nanoparticles are another widely studied substance
that can significantly enhance BioH2 production in dark fermentation. The mechanisms
between Ni-ion/Ni-based nanoparticles and Fe-ion/Fe-based nanoparticles are largely
identical but with minor differences. The key mechanisms for Ni include (a) facilitating
the synthesis of [FeNi] hydrogenase [42], (b) improving the activity of ferredoxin oxidore-
ductase [43], and (c) Ni NPs controlling the concentration of Ni2+ at the optimum level. In
addition, it is worth noting that [NiFe] hydrogenase exists in more bacteria than [FeFe]
hydrogenase. Therefore, Ni can promote H2-producing bacteria in the dark fermentation
process to a certain extent [44].

5. Results
5.1. Impact of Fe-Based Ions and NP Addition

To quantitatively unveil the impact of the concentration of Fe-ion/Fe NPs and size
effects upon the HY and HER in BioH2 generation, the collected values from the literature
(Table 1) were statistically analyzed through our previously established ANN-RSM method
and the results are shown in Figure 3.

Table 1. Comparison of BioH2 production with the addition of Fe-based nanoparticles.

NPs Opt/mg L−1 Substrate SC/g L−1 Size/nm HY/mmol g−1 HER/mmol L−1h−1 Reference

Fe (NPs) 400 Grass 10.7 50 2.9 5.4 [45]
Fe (NPs) 25 Starch 5 35 3 - [18]
Fe (NPs) 300 Malate 3 16 20 0.4 [46]
Fe (NPs) 50 Xylose 30 75 13.3 2 [47]
Fe (NPs) 200 MSJ 10 50 0.9 2.4 [48]
Fe (NPs) 200 Sucrose 7.5 50 15.9 10.1 [27]
Fe (NPs) 175 Glucose 7.5 59 12.9 5.69 [28]
Fe (NPs) 50 Starch 6 35 5 - [43]
Fe (NPs) 250 Malate 4 12 24.2 0.8 [44]

Fe2O3 (NPs) 50 Glucose 5 50 1.92 2.5 [49]
Fe2O3 (NPs) 50 CDW 15.3 33 16.75 102.5 [17]
Fe2O3 (NPs) 200 DW 56 23 7.85 62.4 [30]
Fe2O3 (NPs) 50 Wastewater 110 6.5 1.9 49.4 [50]
Fe2O3 (NPs) 200 MEG 4 100 8.4 0.6 [51]
Fe2O3 (NPs) 300 CAS 10 20 3.875 1.92 [52]
Fe2O3 (NPs) 200 Glucose 10 20 9.2 3.1 [52]
Fe2O3 (NPs) 60 Glucose 6 60 1.92 2.5 [49]
Fe3O4(NPs) 10 Glucose 2.5 100 10.1 0.23 [53]

Fe3O4(A-C-NPs) 250 Glucose 5 30 11.656 3.2 [38]
GT-INP (Fe2O4 and FeO(OH)(NPs) 1000 CO 1.008 70 1.58 0.0662 [54]

Magnetite (NPs) 200 SJ 3 50 6.7 0.23 [55]
Hematite (NPs) 200 Sucrose 12.5 55 10.4 6 [56]

In this table, MEG refers to mono ethylene glycol, SC refers to substrate concentration, MSJ denotes Marcroalgea Saccharina Japonica,
NMBL refers to R. sphaeroides NMBL-02 and E. coli NMBL-04, MC refers to mixed consortia, BA refers to Bacillus anthracis PUNAJAN 1, CP
refers to C. pasteurianum, EA refers to E. aerogenes ATCC13408, EC refers to E. cloacae, Cl refers to Clostridium, Ca refers to C. acetobutylicum
NCIM 2337, SJ refers to sugarcane juice, CAS refers to cassava starch.
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The effects of NPs size and NPs concentration together with the binary combined
impact upon the HY and HER were extensively explored. Regarding HY, it was found that
the size of the NPs together with the concentration of NPs were both statistically significant
to the H2 yield amongst the surveyed literature’s reports of experimental conditions.
From Figure 3A, it is indicated that the HY tended to approach the highest value in the
range of NP size (81–100 nm) and NP concentration (406–604 mg L−1). For HER, it was
found that the size of NPs, the concentration of NPs, and Fe2+/Fe3+ were all significant
to HER. For the combined effects (NP size and concentration), on the other hand, these
effects were found to be statistically insignificant to HER. The 3D plot of HER versus
NPs size and NPs concentration (Figure 3B) also tended to show the highest region of
HER located at the size range of 81–100 nm. Among the collected literature reports, the
HER seemed to be more appreciably and directly related to the relatively larger size of
the particle, which might be quite contradictory to some findings. This indicates that the
manipulation of NPs ideally in size range of 81–100 nm is favorable for both high HY and
HER. Reducing the size of NPs could improve the quantum dot effect, thus improving the
electron transport. In contrast, the electron transport phenomena in extracellular media
during cultivation is quite complicated and some factors such as osmosis condition and
the activity of the fermentation broth might be counter-effective to the nanoparticle size
effect for enhancing BioH2 generation. Currently, very few works have been done to
elucidate the mechanisms of this size impact upon selective enhancement of HY and HER.
From our statistical analysis, a reasonable explanation for the ideal size effect is that the
nanoparticle size of 81–100 nm is more thermodynamically stable than NPs with a smaller
size during fermentation, since Fe-based NPs with smaller size are easier to agglomerate
and form large Fe-based particles and deteriorate the electron transport performance in
extracellular conditions. The fabrication of composites (e.g., Fe@graphene) is a promising
strategy to enable the stable existence of small-sized nanoparticles; however, it has not
been widely investigated.
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5.2. Impact of Ni-Based Ions and NP Addition

The impact of Ni-based ions and NPs upon HY and HER is summarized in Table 2
and the statistical analysis results are shown in Figure 4.

Table 2. Comparison of BioH2 production with the addition of Ni-based nanoparticles.

Nanoparticles Opt/mg L−1 Substrate SC/g L−1 Size/nm HY/mmol g−1 HER/mmol L−1h−1 Reference

Ni (NPs) 5.7 Glucose 14.01 13.6 14.1 11.5 [57]
Ni (NPs) 32 Starch 8 80 2.4 10.3 [18]
Ni (NPs) 60 MEG 4.7 60 1.11 1.5 [23]
Ni (NPs) 10 Glucose 1 25 9.5 30 [32]
Ni (NPs) 1 Glucose 2.5 100 11.7 0.28 [53]
Ni (NPs) 4.3 Glucose 13.92 28 12.7 10.4 [57]
Ni (NPs) 2.5 Glucose 5 42.5 10.8 1.3 [58]
Ni (NPs) 25 Starch 10 40 2.7 11.5 [18]
Ni (NPs) 11 Glucose 2.7 120 1.21 0.22 [59]

NiO (NPs) 20 MEG 4 100 7.25 0.5 [51]
NiO (NPs) 10 CDW 15.3 23 15.7 44.9 [17]
NiO (NPs) 1.5 Wastewater 9.6 23.6 0.5 12 [31]
Ni (NPs) 100 CS 20 50 20 0.27 [60]

In this table, MEG refers to mono ethylene glycol, CS: cornstalk.
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Among the collected literature reports, the size and concentration of NPs together
with their combined effect were not statistically significant to either HY or HER according
to the calculated p-value. Regarding HY (Figure 4A), it was found that both too low and
too high levels of NPs size and concentration were not favorable. Indeed, an optimal
range existed if the NP size and concentration were manipulated within 86–120 nm and
(81–120 mg L−1, respectively. Similarly, the HER also presented the same variation patterns
as those of HY. An optimal range of particle size (86–120 nm) and Ni-ion/NPs concentration
(81–120 mg L−1) existed for HER. Unlike Fe, Ni presented more consistent responding
patterns between HY and HER in regards to the variation in the size and concentration of
NPs. In addition, studies have indicated that Ni-based ions and NPs tend to selectively
enhance some BioH2 generation pathways, such as enhancing the acetate pathway while
suppressing or inhibiting butyrate and propionate pathways. However, discrepancies still
exist due to different strains of microbes inoculated, cultivation medium, experimental
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uncertainties, etc. Although the size of NPs was significant to the HER, the combined effects
(NP size and concentration) were found to be insignificant. Among the collected literature
reports, the HER seemed to be directly related to the relatively larger size of the particles.
This indicates that the manipulation of NPs ideally in size range of 81–100 nm is favorable
for both HY and HER. This might contradict the first impression that the reduction of
NPs size significantly enhances the quantum dot effect that subsequently boosts electron
transport. However, the preparation and large-scale deployment of small-sized NPs that
can stably exist in the cultivation medium has always been a substantial challenge, which
will inevitably increase fixing and operating costs. Fortunately, the enhancement of BioH2
generation seems to be linked to an ideal range of NPs at the size of 81–100 nm; therefore,
blindly pursuing small nanoparticles may be meaningless.

5.3. Impact of Other Metal and Non-Metal Nanoparticle Addition

The impact of other metal and non-metal NPs addition upon BioH2 generation is
summarized in Table 3.

Table 3. Comparison of BioH2 production with the addition of other nanoparticles, where POME: palm oil mill effluent.

NPs Opt/mg L−1 Substrate SC/g L−1 Size/nm HY/mmol g−1 HER/mmol L−1h−1 Reference

Ag 0.002 Glucose 12.5 15 13.8 10.5 [61]
Cu 2.5 Glucose 2.5 97 2.8 5.4 [62]
Pd 5 Glucose 10 100 8.1 6.7 [63]
Au 0.002 Sucrose 15 5 7.5 7.3 [64]
Co 1 Glucose 2.5 100 4.85 0.16 [53]

CoO 1 POME 76.5 17 22.5 0.7 [31]
TiO2 100 Xylose 30 30 12 1.8 [47]
ZnO 10 MEG 4 100 7.3 0.58 [51]
MgO 1 Glucose 100 100 4.3 0.1 [53]

Cu/SiO2 0.064 Glucose 5 2.5 5.8 0.54 [65]
Ag/SiO2 0.107 Glucose 5 2.5 5.4 0.5 [65]
Pd/SiO2 0.207 Glucose 5 2.5 5.4 0.52 [65]

The addition of NPs was found to be effective at improving BioH2 generation due
to the fact that NPs can facilitate electron transport in extracellular cultivation medium
during fermentation [66,67]. With regard to the HY and HER, it was quite hard to find one
individual NPs that positively enhanced both HY and HER simultaneously. This reflects the
complex features of the BioH2 generation process, which generally involves many different
steps of sub-metabolic pathways [43,68]. Among the investigated collected literature,
CoO-NPs addition was among the most appreciable enhancement for HY and Ag-NPs
addition was the most influential factor for HER enhancement. In addition, the impact of
adding NPs prepared from hybrid approaches such as combining two different kinds of
NPs, i.e., Cu and SiO2, was marginal. The correlation between BioH2 generation values
(HER and HY) and the corresponding size of the NPs added to the fermentation broth
was constructed and is plotted in Figure 5. The corresponding HY and HER varied from
0–30 (mmol g−1) and 0–80 (mmol L−1 h−1), respectively. Regarding to the enhancement
of HY, some reported that smaller size (less than 42 nm) surely increased HY from 10 to
20–25 mmol g−1. On the other hand, for the enhancement of HER, some reported that a
relatively bigger size of 40–50 nm seemed to significantly increase the H2 evolution rate.
However, by considering the numbers of reports, the majority of works showed (i) the
size of NPs seems to be more effective in enhancing HY than HER, and (ii) the rate of H2
evolution seems to be less responsive to the size of NPs, though some literature reported
exceptionally higher values of HER after NPs (40–50 nm) addition.
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5.4. Impact of Ion Addition

In this work, in order to assess the concentration impacts of different ions upon HY
and HER BioH2 generation, ions including Mg2+, Cu2+, Na+, NH4

+, and K+ were selected
and all data are summarized in Table S1.

It is worth noting that some metal ions inevitably introduced into the culture medium
due to the use of NPs addition are not in the scope of discussion. It was quite challenging
to find out the detailed concentration ranges in each study due to the factor that many
reports did not specify the detailed cultivation steps. Although this could be difficult
for estimating the level of those ions during the cultivation, the type of defined and
undefined cultivation media used in the studies could be utilized to indirectly estimate
the range of those different ions accordingly. The level of different ions upon HY and
HER BioH2 generation are summarized in Tables S2 and 4, respectively, and the collected
values from the literature were statistically analyzed through our previously established
ANNs-RSM method.

By comparing the p-values, the impact of the variations in ion concentrations upon
HY and HER of BioH2 generation could be identified accordingly [16,69]. It was found
that the variations in the investigated ions only statistically influenced HER, but not
HY. This suggests pivotal guidance for process intensification for BioH2 generation. The
manipulations of ion concentrations in cultivation media can effectively improve or inhibit
the rate but not the potential limit of BioH2 generation. In other words, the kinetics
of BioH2 generation can be altered by varying some level of ionic concentration. The
statistically significant impact of metal ion addition on HER is shown in Figure 6. Among
the investigated ions, the single factor included Mg2+, Cu2+, and Na+ (Figure 6A,B) and
the combined factor included Mg2+/Cu2+, Cu2+/Na+, Na+/NH4

+, Na+/K+, and NH4
+/K+

(Figure 6C–E) as the most influential factors for HER. The responding patterns of HER
towards different kinds of ions appeared to be appreciably different. These effects can be
broadly classified as counter-effective and synergistic. For instance, for the counter-effective
impact, the binary Mg2+/Cu2+ belongs to this category, as does the binary NH4

+/K+

(Figure 6A,E). For the synergistic effect, the binary Cu2+/Na+, Na+/NH4
+, and Na+/K+

fall into this category (Figure 6B–D). These different ions will act as essential nutritious
elements during metabolism at different stages of the growth of microbes [70–72]. For the
growth pattern of microbes, there will normally be lagging, exponential, stationary, and
death phases [73–75]. After inoculation, the microbes will experience a lagging phase with
different duration [76,77]. The length of the lagging phase depends on many factors, such
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as the harshness of cultivation media, which contains lignocellulosic precursors and high
levels of salt concentration [78–80].

Table 4. ANOVA analysis for the effect of ion concentration upon HER.

Source Sum of Squares DF Mean Square F-Value p-Value

Model 38,286.08 20 1914.30 4.16 0.0005
A-Mg2+ 2467.73 1 2467.73 5.36 0.0291
B-Cu2+ 1729.50 1 1729.50 3.75 0.0640
C-Na+ 7543.84 1 7543.84 16.38 0.0004

D-NH4+ 496.57 1 496.57 1.08 0.3091
E-K+ 261.49 1 261.49 0.5677 0.4582
AB 7903.35 1 7903.35 17.16 0.0003
AC 1957.27 1 1957.27 4.25 0.0498
AD 513.91 1 513.91 1.12 0.3009
AE 1109.51 1 1109.51 2.41 0.1332
BC 41.84 1 41.84 0.0908 0.7656
BD 330.26 1 330.26 0.7170 0.4052
BE 16.50 1 16.50 0.0358 0.8514
CD 4919.66 1 4919.66 10.68 0.0031
CE 2100.83 1 2100.83 4.56 0.0427
DE 1719.79 1 1719.79 3.73 0.0647
A2 801.66 1 801.66 1.74 0.1990
B2 3897.09 1 3897.09 8.46 0.0075
C2 2148.80 1 2148.80 4.67 0.0406
D2 387.39 1 387.39 0.8410 0.3679
E2 1539.54 1 1539.54 3.34 0.0795

Residue 11,515.22 25 460.61
Lack of fit 11,515.22 20 575.76
Pure Error 0.0000 5 0.0000
Cor total 49,801.31 45

In this table, r2 = 0.94, adjusted r2 = 0.93, predicted r2 = 0.93, and adequate precision (AP) = 15.

The strategies for how to improve and shorten the length of the lagging phase will con-
tribute to the improvement of the duration of the lagging phase [81]. For microbes to initiate
their metabolism, elements such as Mg2+, Na+, NH4

+, and K+ are essential [82–84]. These
elements usually act as the major components of active centers in many enzymes [85–87].
Ensuring a sufficient amount of these necessary elements will facilitate the smooth and fast
transition from the lagging phase to the growth phase [88–90]. It is commonly accepted
that BioH2 generation will occur mainly in the exponential and stationary phases [91,92].
Clearly, these investigated literature reports provide useful guidance for the levels of these
necessary ion elements in the cultivation media. More importantly, through statistical
analysis from our developed ANN-RSM algorithm, the level of the response (the enhanced
HER) for those inputs was underpinned. In addition, the order of significance for HER
was also identified as the following: Na+ > Mg2+ > Cu2+ > NH4

+ > K+. From a holistic
point of view, all the steps involved in BioH2 generation metabolism could be targeted as
steps to enhance BioH2 generation (HY and HER). Two major metabolic pathways, namely,
butyrate and acetate, are mainly associated with the activities of hydrogenase and the
generation of H2 during dark fermentation [93–95]. From a stoichiometric perspective, the
metabolic route towards acetate generates two times that of butyrate pathways [96,97].
From a process intensification point of view, the facilitation of the metabolic pathway
towards an acetate pathway is favorable. From our statistical analysis, of all the investi-
gated ions among the literature reports, the yield of BioH2 generation for these chemical
additions of ions is not significant, suggesting that the enhancement of BioH2 generation
by simple chemical additions of ions might be ineffective at further improving the ceiling
value of BioH2 generation yield. For the sake of skewing the delicate balance between
butyrate and acetate pathways, the combination of other chemical additions such as acti-
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vated carbon, biochars, or porous adsorbents will be more effective in enhancing BioH2
generation [98–100].
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6. Conclusions

The statistical significance of these different NPs and ion additions were rigorously
and quantitatively analyzed through a well-developed ANNs-RSM algorithm. As a result,
this work provided effective guidance for the size optimization of NP additions and
concentration regulation of ion additives in practice. For Fe-based NPs and ions, both the
size of NPs and their corresponding concentration are statistically significant to HY. For
HER, it was found that the combined effect of NP size and concentration is insignificant to
HER. For Ni-based NPs and ions, neither size nor concentration is statistically significant
to HY and HER, respectively. The variation in the size of NPs for the enhancement of
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HY and HER behaved differently. The smaller (less than 42 nm) were found to definitely
improve HY. Simultaneously, for HER, most reported literature indicated that manipulating
the size of NPs is ineffective. It was found that variations in the investigated ions only
statistically influenced HER, but not HY. This discovery suggests very pivotal guidance for
process intensification for BioH2 generation. Using the constructed algorithm, the level of
responses (enhanced HER) towards inputs (other ion additions) was underpinned, and the
order of significance towards HER was also identified as the following: Na+ > Mg2+ > Cu2+

> NH4
+ > K+. However, the number of relevant literature reports is currently limited; with

the support of more experimental data, the results predicted by the ANNs-RSM algorithm
will be more credible.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/en14185916/s1, Figure S1: Schematic diagram of methodology: (A) The procedures flowchart,
(B) ANNs construction: feed forward three layers networks; Table S1: Ion comparison upon BioH2
generation—refers to all data missing as, for convenience of calculation, the missing value was
replaced by the averaged value during the artificial neuron network learning process; Table S2:
ANOVA analysis for the effect of ion concentration on HY, where r2 = 0.94, adjusted r2 = 0.93,
predicted r2 = 0.93, and adequate precision (AP) = 15.
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