117 research outputs found

    Variation of Oriental Oak (Quercus variabilis) Leaf δ13C across Temperate and Subtropical China: Spatial Patterns and Sensitivity to Precipitation

    Get PDF
    The concentration of the carbon-13 isotope (leaf δ13C) in leaves is negatively correlated with the mean annual precipitation (MAP) atlarge geographical scales. In this paper, we explain the spatial pattern of leaf δ13C variation for deciduous oriental oak (Quercus variabilis Bl.) across temperate and subtropical biomes and its sensitivity to climate factors such as MAP. There was a 6‰ variation in the leaf δ13C values of oak with a significant positive correlation with latitude and negative correlations with the mean annual temperature (MAT) and MAP. There was no correlation between leaf δ13C and altitude or longitude. Stepwise multiple regression analyses showed that leaf δ13C decreased 0.3‰ per 100 mm increase in MAP. MAP alone could account for 68% of the observed variation in leaf δ13C. These results can be used to improve predictions for plant responses to climate change and particularly lower rainfall

    Roll reduction and course keeping for the ship moving in waves with factorized NGMV control

    Get PDF
    A factorized Nonlinear Generalized Minimum Variance (NGMV) control law is developed for a combined roll and yaw motion compensation using rudders and fins. The nonlinear model used for control design includes the non-minimum phase interaction from rudder to roll motion, and the dynamics from fins to yaw motion. This controller is developed using the polynomial approach to ensure that the non-minimum phase system remains stable in closed-loop. The effectiveness of the approach is demonstrated on a simulated nonlinear ship model

    Climatic Control on Plant and Soil d13C along an Altitudinal Transect of Lushan Mountain in Subtropical China: Characteristics and Interpretation of Soil Carbon Dynamics

    Get PDF
    <div><p>Decreasing temperature and increasing precipitation along altitude gradients are typical mountain climate in subtropical China. In such a climate regime, identifying the patterns of the C stable isotope composition (δ<sup>13</sup>C) in plants and soils and their relations to the context of climate change is essential. In this study, the patterns of δ<sup>13</sup>C variation were investigated for tree leaves, litters, and soils in the natural secondary forests at four altitudes (219, 405, 780, and 1268 m a.s.l.) in Lushan Mountain, central subtropical China. For the dominant trees, both leaf and leaf-litter δ<sup>13</sup>C decreased as altitude increased from low to high altitude, whereas surface soil δ<sup>13</sup>C increased. The lower leaf δ<sup>13</sup>C at high altitudes was associated with the high moisture-related discrimination, while the high soil δ<sup>13</sup>C is attributed to the low temperature-induced decay. At each altitude, soil δ<sup>13</sup>C became enriched with soil depth. Soil δ<sup>13</sup>C increased with soil C concentrations and altitude, but decreased with soil depth. A negative relationship was also found between O-alkyl C and δ<sup>13</sup>C in litter and soil, whereas a positive relationship was observed between aromatic C and δ<sup>13</sup>C. Lower temperature and higher moisture at high altitudes are the predominant control factors of δ<sup>13</sup>C variation in plants and soils. These results help understand C dynamics in the context of global warming.</p></div

    Identification of novel immune-related targets mediating disease progression in acute pancreatitis

    Get PDF
    IntroductionAcute pancreatitis (AP) is an inflammatory disease with very poor outcomes. However, the order of induction and coordinated interactions of systemic inflammatory response syndrome (SIRS) and compensatory anti-inflammatory response syndrome (CARS) and the potential mechanisms in AP are still unclear.MethodsAn integrative analysis was performed based on transcripts of blood from patients with different severity levels of AP (GSE194331), as well as impaired lung (GSE151572), liver (GSE151927) and pancreas (GSE65146) samples from an AP experimental model to identify inflammatory signals and immune response-associated susceptibility genes. An AP animal model was established in wild-type (WT) mice and Tlr2-deficient mice by repeated intraperitoneal injection of cerulein. Serum lipase and amylase, pancreas impairment and neutrophil infiltration were evaluated to assess the effects of Tlr2 in vivo.ResultsThe numbers of anti-inflammatory response-related cells, such as M2 macrophages (P = 3.2 × 10–3), were increased with worsening AP progression, while the numbers of pro-inflammatory response-related cells, such as neutrophils (P = 3.0 × 10–8), also increased. Then, 10 immune-related AP susceptibility genes (SOSC3, ITGAM, CAMP, FPR1, IL1R1, TLR2, S100A8/9, HK3 and MMP9) were identified. Finally, compared with WT mice, Tlr2-deficient mice exhibited not only significantly reduced serum lipase and amylase levels after cerulein induction but also alleviated pancreatic inflammation and neutrophil accumulation.DiscussionIn summary, we discovered SIRS and CARS were stimulated in parallel, not activated consecutively. In addition, among the novel susceptibility genes, TLR2might be a novel therapeutic target that mediates dysregulation of inflammatory responses during AP progression

    Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China

    Get PDF
    &#13; Biodiversity-ecosystem functioning (BEF) experiments address ecosystem-level consequences of species loss by comparing communities of high species richness with communities from which species have been gradually eliminated. BEF experiments originally started with microcosms in the laboratory and with grassland ecosystems. A new frontier in experimental BEF research is manipulating tree diversity in forest ecosystems, compelling researchers to think big and comprehensively.&#13; We present and discuss some of the major issues to be considered in the design of BEF experiments with trees and illustrate these with a new forest biodiversity experiment established in subtropical China (Xingangshan, Jiangxi Province) in 2009/2010. Using a pool of 40 tree species, extinction scenarios were simulated with tree richness levels of 1, 2, 4, 8 and 16 species on a total of 566 plots of 25.8 × 25.8 m each.&#13; The goal of this experiment is to estimate effects of tree and shrub species richness on carbon storage and soil erosion; therefore, the experiment was established on sloped terrain. The following important design choices were made: (i) establishing many small rather than fewer larger plots, (ii) using high planting density and random mixing of species rather than lower planting density and patchwise mixing of species, (iii) establishing a map of the initial 'ecoscape' to characterize site heterogeneity before the onset of biodiversity effects and (iv) manipulating tree species richness not only in random but also in trait-oriented extinction scenarios.&#13; Data management and analysis are particularly challenging in BEF experiments with their hierarchical designs nesting individuals within-species populations within plots within-species compositions. Statistical analysis best proceeds by partitioning these random terms into fixed-term contrasts, for example, species composition into contrasts for species richness and the presence of particular functional groups, which can then be tested against the remaining random variation among compositions.&#13; We conclude that forest BEF experiments provide exciting and timely research options. They especially require careful thinking to allow multiple disciplines to measure and analyse data jointly and effectively. Achieving specific research goals and synergy with previous experiments involves trade-offs between different designs and requires manifold design decisions.&#13

    Ship roll stabilization control with low speed loss

    Get PDF
    Large roll motion induced by waves can severely affect the ability of vessels and the speed will loss due to added resistance which caused by ship motions, especially in moderate to high sea states. With increasing needs of fuel efficiency and greenhouse gas (GHG) emissions, the effect of added resistance on surface ship performance must be considered when a ship fin stabilizer control system is designed. In this paper, we investigate basic principles of added resistance in oblique waves and ship calm water resistance. An alternative approach for reducing speed loss while keeping the satify roll reduction percentage, is proposed by controlling both roll and roll rate at the same time. A double nonlinear generalized minimum variance (NGMV) controller is used for achieving this objective. Finally, the effectiveness of the method is demonstrated

    Bioresour. Technol.

    No full text
    An unpolluted process of wheat straw fractionation by steam explosion coupled with ethanol extraction was studied. The wheat straw was steam exploded for 4.5 min with moisture of 34.01%, a pressure of 1.5 MPa without acid or alkali. Hemicellulose sugars were recovered by water countercurrent extraction and decolored with chelating ion exchange resin D412. The gas chromatography (GC) and high-performance liquid chromatography (HPLC) analysis results indicated that there were organic acids in the hemicellulose sugars and the ratio of monosaccharides to oligosaccharides was 1:9 and the main component, xylose, was 85.9% in content. The total recovery rate of hemicellulose was 80%. Water washed materials were subsequently extracted with ethanol. The optimum extraction conditions in this work were 40% ethanol, fiber/liquor ratio 1:50 (w/v), severity log(R) = 3.657 (180 degrees C for 20 min), 0.1% NaOH. The lignin yield was 75% by acid precipitation and 85% ethanol solvent was recovered. The lignin was purified using Bjorkman method. Infrared spectrometry (IR) results indicated that the lignin belonged to GSH (guaiacyl (G) syringyl (S) and p-hydroxyphenyl (H)) lignin and its purity rate reached 85.3%. The cellulose recovery rate was 94% and the results of electron spectroscopy for chemical analysis (ESCA) and infrared spectrometry (IR) showed that hemicellulose and lignin content decreased after steam explosion and ethanol extraction. (c) 2006 Elsevier Ltd. All rights reserved.An unpolluted process of wheat straw fractionation by steam explosion coupled with ethanol extraction was studied. The wheat straw was steam exploded for 4.5 min with moisture of 34.01%, a pressure of 1.5 MPa without acid or alkali. Hemicellulose sugars were recovered by water countercurrent extraction and decolored with chelating ion exchange resin D412. The gas chromatography (GC) and high-performance liquid chromatography (HPLC) analysis results indicated that there were organic acids in the hemicellulose sugars and the ratio of monosaccharides to oligosaccharides was 1:9 and the main component, xylose, was 85.9% in content. The total recovery rate of hemicellulose was 80%. Water washed materials were subsequently extracted with ethanol. The optimum extraction conditions in this work were 40% ethanol, fiber/liquor ratio 1:50 (w/v), severity log(R) = 3.657 (180 degrees C for 20 min), 0.1% NaOH. The lignin yield was 75% by acid precipitation and 85% ethanol solvent was recovered. The lignin was purified using Bjorkman method. Infrared spectrometry (IR) results indicated that the lignin belonged to GSH (guaiacyl (G) syringyl (S) and p-hydroxyphenyl (H)) lignin and its purity rate reached 85.3%. The cellulose recovery rate was 94% and the results of electron spectroscopy for chemical analysis (ESCA) and infrared spectrometry (IR) showed that hemicellulose and lignin content decreased after steam explosion and ethanol extraction. (c) 2006 Elsevier Ltd. All rights reserved

    Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM]Cl

    No full text
    A new cellulose solvent ionic liquid 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) was used to treat wheat straw and steam-exploded wheat straw (SEWS) in order to improve the enzymatic hydrolysis rates, while the water was used as the control. The enzymatic hydrolysis results showed that the hydrolysis rates of materials treated with [BMIM]Cl were improved. The hydrolysis rate of treated wheat straw could reach 70.37% and the SEWS could be completely hydrolyzed, while hydrolysis rates of the wheat straw and SEWS treated with water were 42.78% and 68.78% under the same conditions, respectively. The FTIR analysis and polymerization degree measurement indicated that the hydrolysis rates improvement was attributed to the decrease of the polymerization degrees of cellulose and hemicellulose, the absolute crystallinity degree of cellulose and the increase of its reaction accessibility
    • …
    corecore