1,092 research outputs found

    EM modelling of periodic structures using green's functions

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Fast Chain-of-Thought: A Glance of Future from Parallel Decoding Leads to Answers Faster

    Full text link
    In this work, we propose FastCoT, a model-agnostic framework based on parallel decoding without any further training of an auxiliary model or modification to the LLM itself. FastCoT uses a size-varying context window whose size changes with position to conduct parallel decoding and auto-regressive decoding simultaneously, thus fully utilizing GPU computation resources. In FastCoT, the parallel decoding part provides the LLM with a quick glance of the future composed of approximate tokens, which could lead to faster answers compared to regular autoregressive decoding used by causal transformers. We also provide an implementation of parallel decoding within LLM, which supports KV-cache generation and batch processing. Through extensive experiments, we demonstrate that FastCoT saves inference time by nearly 20% with only a negligible performance drop compared to the regular approach. Additionally, we show that the context window size exhibits considerable robustness for different tasks

    A Research on Community-Based Livestock of Qinghai-Tibet Plateau

    Get PDF
    Qinghai-Tibet Plateau locates in Southwestern China, covering the whole area of Tibet Autonomous Region, Qinghai Province, Southern part of Gansu Province, Northwestern part of Sichuan Province and Northwestern part of Yunnan Province, with an area of around 139.08 million hectares of natural grassland, accounting for 39% of the total area of natural grassland in China. It is also the largest natural ecozones in China and one of the least disturbed regions by human activities, with its air, water sources, soil, grassland, wildlife in their pristine state. Qinghai-Tibet Plateau is the native home for Tibetan people. Grassland animal husbandry is the foundation of the economy of QTP and the main source of livelihood for local nomadic people. During the long term of concerted evolution with the nature, Tibetan people living on Qinghai-Tibet Plateau have formed a uniquely holistic grassland ecological culture that is compatible with their production system and the ecosystem. The majority of Tibetan people observe Tibetan Buddhism. Their respect for nature and their belief in that all sentient beings are equal take deep root in their traditional culture. Their harmonious co-existence with nature exemplifies the eco-civilization ideas and provides a solid cultural foundation for both ecology conservation and featured animal husbandry development. On Qinghai-Tibet Plateau, national policies and initiatives such as dual contract of livestock and forage, natural grassland vegetation recovery, returning grazing land to grassland, grassland ecosystem subsidy and rewarding mechanism have been implemented, playing an important role in promoting grassland ecosystem conservation and grassland animal husbandry development. However, since grassland animal husbandry is a complex system involving grassland, farm animal, environment, society, economy, culture, etc, there are still many outstanding problems to be solved

    Evolutionary Characterization of the Pandemic H1N1/ 2009 Influenza Virus in Humans Based on Non-Structural Genes

    Get PDF
    The 2009 influenza pandemic had a tremendous social and economic impact. To study the genetic diversity and evolution of the 2009 H1N1 virus, a mutation network for the non-structural (NS) gene of the virus was constructed. Strains of the 2009 H1N1 pandemic influenza A virus could be divided into two categories based on the V123I mutation in the NS1 gene: G1 (characterized as 123 Val) and G2 (characterized as 123 Ile). Sequence homology analysis indicated that one type of NS sequence, primarily isolated from Mexico, was likely the original type in this pandemic. The two genotypes of the virus presented distinctive clustering features in their geographic distributions. These results provide additional insight into the genetics and evolution of human pandemic influenza H1N1

    Reassortant H9N2 Influenza Viruses Containing H5N1-Like PB1 Genes Isolated from Black-Billed Magpies in Southern China

    Get PDF
    H9N2 influenza A viruses have become endemic in different types of terrestrial poultry and wild birds in Asia, and are occasionally transmitted to humans and pigs. To evaluate the role of black-billed magpies (Pica pica) in the evolution of influenza A virus, we conducted two epidemic surveys on avian influenza viruses in wild black-billed magpies in Guangxi, China in 2005 and characterized three isolated black-billed magpie H9N2 viruses (BbM viruses). Phylogenetic analysis indicated that three BbM viruses were almost identical with 99.7 to 100% nucleotide homology in their whole genomes, and were reassortants containing BJ94-like (Ck/BJ/1/94) HA, NA, M, and NS genes, SH/F/98-like (Ck/SH/F/98) PB2, PA, and NP genes, and H5N1-like (Ck/YN/1252/03, clade 1) PB1 genes. Genetic analysis showed that BbM viruses were most likely the result of multiple reassortments between co-circulating H9N2-like and H5N1-like viruses, and were genetically different from other H9N2 viruses because of the existence of H5N1-like PB1 genes. Genotypical analysis revealed that BbM viruses evolved from diverse sources and belonged to a novel genotype (B46) discovered in our recent study. Molecular analysis suggested that BbM viruses were likely low pathogenic reassortants. However, results of our pathogenicity study demonstrated that BbM viruses replicated efficiently in chickens and a mammalian mouse model but were not lethal for infected chickens and mice. Antigenic analysis showed that BbM viruses were antigenic heterologous with the H9N2 vaccine strain. Our study is probably the first report to document and characterize H9N2 influenza viruses isolated from black-billed magpies in southern China. Our results suggest that black-billed magpies were susceptible to H9N2 influenza viruses, which raise concerns over possible transmissions of reassortant H9N2 viruses among poultry and wild birds

    Reassortant H9N2 Influenza Viruses Containing H5N1- Like PB1 Genes Isolated from Black-Billed Magpies in Southern China

    Get PDF
    H9N2 influenza A viruses have become endemic in different types of terrestrial poultry and wild birds in Asia, and are occasionally transmitted to humans and pigs. To evaluate the role of black-billed magpies (Pica pica) in the evolution of influenza A virus, we conducted two epidemic surveys on avian influenza viruses in wild black-billed magpies in Guangxi, China in 2005 and characterized three isolated black-billed magpie H9N2 viruses (BbM viruses). Phylogenetic analysis indicated that three BbM viruses were almost identical with 99.7 to 100% nucleotide homology in their whole genomes, and were reassortants containing BJ94-like (Ck/BJ/1/94) HA, NA, M, and NS genes, SH/F/98-like (Ck/SH/F/98) PB2, PA, and NP genes, and H5N1-like (Ck/YN/1252/03, clade 1) PB1 genes. Genetic analysis showed that BbM viruses were most likely the result of multiple reassortments between co-circulating H9N2-like and H5N1-like viruses, and were genetically different from other H9N2 viruses because of the existence of H5N1-like PB1 genes. Genotypical analysis revealed that BbM viruses evolved from diverse sources and belonged to a novel genotype (B46) discovered in our recent study. Molecular analysis suggested that BbM viruses were likely low pathogenic reassortants. However, results of our pathogenicity study demonstrated that BbM viruses replicated efficiently in chickens and a mammalian mouse model but were not lethal for infected chickens and mice. Antigenic analysis showed that BbM viruses were antigenic heterologous with the H9N2 vaccine strain. Our study is probably the first report to document and characterize H9N2 influenza viruses isolated from black-billed magpies in southern China. Our results suggest that black-billed magpies were susceptible to H9N2 influenza viruses, which raise concerns over possible transmissions of reassortant H9N2 viruses among poultry and wild birds

    Total Bilirubin Level is Associated with the Risk of Left Atrial Appendage Thrombosis in Patients with Non-Valvular Atrial Fibrillation

    Get PDF
    Objectives: There are some evidence suggesting that total bilirubin (TBIL) appears to be associated with stroke in patients with nonvalvular atrial fibrillation (NVAF). The left atrial appendage (LAA) is the most common orgin of thrombus in patients with NVAF. The purpose of this study was to assess a possible relationship between plasma TBIL levels and LAA thrombus in NVAF patients. Methods: We retrospectively screened 459 consecutive hospitalized patients with NVAF at three AF centers, who underwent transesophageal echocardiography or cardiac CT. According to the examination results, the patients were divided into either the LAA thrombosis group (41 cases) or the no LAA thrombosis group (418 cases). Independent sample t test, Mann-Whitney U-test and chi-square test were used to compare and analyze the general clinical data of the two groups. Multivariate Logistic regression was used to analyze whether TBIL was a risk factor for LAA thrombosis in patients with NVAF. Pearson correlation analysis was used to explore the correlation between TBIL and other influencing factors. The predictive value of TBIL for LAA thrombosis in patients with NVAF was evaluated by ROC curve. Results: A total of 459 patients were enrolled in this study. Compared with the group without LAA thrombosis, the level of TBIL in LAA thrombosis group was significantly increased (21.34 ± 9.34 umol/L vs. 13.98 ± 4.25 umol/L, 'P' < 0.001). Multivariate logistic regression showed that TBIL level was a risk factor for LAA thrombosis ('OR', 1.229; 95% 'CI', 1.122~1.345; 'P' < 0.001). The AUC of the ROC curve is 0.801 (95% 'CI', 0.725~0.877; 'P' < 0.001). At 17.4 umol/L of TBIL, the patient may have LAA thrombosis (sensitivity 73.2%; specificity 82.1%). Conclusions: In patients with NVAF, TBIL level is positively associated with LAA thrombosis, and TBIL level may be an index reflecting LAA thrombosis

    Ultra-compact lithium niobate photonic chip for high-capacity and energy-efficient wavelength-division-multiplexing transmitters

    Get PDF
    Recently, high-performance thin-film lithium niobate optical modulators have emerged that, together with advanced multiplexing technologies, are highly expected to satisfy the ever-growing demand for high-capacity optical interconnects utilizing multiple channels. Accordingly, in this study, a compact lithium-niobate-on-insulator (LNOI) photonic chip was adopted to establish four-channel wavelength-division-multiplexing (WDM) transmitters, comprising four optical modulators based on ultracompact 2 × 2 Fabry-Perot cavities and a four-channel WDM filter based on multimode waveguide gratings. The fabricated chip with four wavelength channels has a total footprint as compact as 0.3 × 2.8 mm2, and exhibits an excess loss of ~0.8 dB as well as low inter-channel crosstalk of < –22 dB. Using this LNOI photonic chip, high-capacity data transmissions of 320 Gbps (4 × 80 Gbps) on-off-keying signals and 400 Gbps (4 × 100 Gbps) four-level pulse amplitude signals were successfully realized with the ultra-low power consumption of 11.9 fJ/bit
    corecore