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Summary 

 

    In this thesis, a full wave integral equation method is used to analyze three useful 

periodic structures and analyze their scattering and radiation properties, combining with 

periodic and cavity Green’s functions. An entire-domain Galerkin’s technique is 

employed to discretize the integral equations of boundary conditions. For the equivalent 

magnetic currents representing a doubly periodic array of rectangular apertures, the basis 

and testing functions are chosen to be Chebyshev polynomials and their associated 

weights. The components of Green’s functions, used in calculating the electric and 

magnetic fields for periodic array and in cavity, are derived and given out. 

 

    In Chapter 1, the basic theory and several useful acceleration approaches for periodic 

and cavity Green’s functions are introduced briefly. In Chapter 2, a thick periodically 

perforated plate is modelled using the above approach, and the calculated results from the 

proposed model are compared with the experimental and numerical data in previous 

literatures. The effects of the plate thickness, aperture dimensions, and incident wave on 

the scattering properties are discussed. In Chapter 3, a probe-excited cavity-backed 

aperture array is modelled with the proposed method. The effects of cavity depth, 

aperture size, and periodicity for the radiation properties of such a array are analyzed and 

illustrated. In Chapter 4, infinite planar dipole array with a periodically excavated ground 

plane are modelled for two cases. One case is the dipole array above a ground plane with 

periodically arranged concave rectangular cavities, and the other case is the dipole array 

“embedded” in a ground plane with periodically arranged concave rectangular cavities. 



 v

The radiation impedance results are compared with those available data in literature for 

some ultimate cases, and a good agreement is observed. In Chapter 5, a study is 

performed on the mutual coupling properties of two suspended plate antennas (SPAs) 

with an inclined ground plane. An approximate formula for evaluating the mutual 

coupling between the square SPAs with an inclined ground plane is presented and 

verified. And in Chapter 6, the conclusions for this thesis are given. 
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Chapter 1 Introduction 

 

1.1   Background and Previous Work 

Periodic Green’s functions have been of interest for many years, since they are useful 

for the analysis of well-known application like frequency selective surfaces (FSS) and 

array antennas [1.1, 1.2]. With the appearance of new periodic materials and structures 

like Electromagnetic Band Gap structures and Left-hand materials, the need for an 

accurate and efficient method of computing these Green’s functions becomes more 

important.  

 

A frequency selective surface can be viewed as a filter for plane waves at any angles 

of incidence. It is usually designed to reflect or transmit electromagnetic waves with 

frequency discrimination. It has been widely used in radar systems, broadband 

communications and antenna technology. More recently, it also invokes research interests 

in novel applications of general electromagnetic periodic structures such as 

photonic/electromagnetic band gap structures and double negative metamaterials, etc.  

 

On the other hand, cavity Green’s function has been investigated as another type of 

important Green’s function [1.3-1.5], due to its applications in various microwave 

structures involving cavities. In recent years, to accelerate the convergence of cavity 

Green’s functions used in the analysis of shielded structures, like the electromagnetic 

compatibility (EMC)/electromagnetic interference (EMI) studies including wire antennas 

and septa inside cavities, some new calculation schemes have been proposed [1.6, 1.7].   
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1.2   Motivation and Scope of this thesis 

    The combination of periodic Green’s function and cavity Green’s function has been 

found in the solutions for FSS scattering problem [1.8], and the combination of free space 

Green’s function and cavity Green’s function has been found in solutions to the radiation 

of a single aperture or slot backed by a cavity [1.9]. Actually, the combination of periodic 

Green’s function and cavity Green’s function can also be used in solutions to the 

radiation of periodic array backed by cavities. And in many practical applications, the 

solutions to cavity-backed array problems are needed. However, the theoretical study in 

this area is seldom found in previous literatures. 

   

    This thesis presents a full wave integral equation model in spatial domain to rigorously 

solve three useful periodic structures and analyze their scattering and radiation properties, 

combining with periodic and cavity Green’s functions. An entire-domain Galerkin’s 

technique is employed and appropriate basis functions are chosen to obtain a close form 

solution, accelerating the convergence.  

 

1.3   Introduction of Periodic Green’s Functions 

1.3.1 Formulation of Periodic Green’s Functions 

    Huge computing resources are required in the analyses of many three-dimensional EM 

problems. One way to go through is to consider periodic structures in order to reduce the 

investigation domain in one cell of the structure. The three-dimensional Maxwell’s 

equations defined on a doubly periodic domain with interfaces between media of 

differing dielectric constants is a very important application of Maxwell’s equations, and 
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it is also the basis of the derivation of this thesis. In the absence of charges or currents 

and in the case of time-harmonic electromagnetic wave, the electric field vector E  

defined in a medium in Maxwell’s equations satisfies the Helmholtz equation of the form 

02
0

2 =+∇ EkE ε ,                                                   (1.1) 

subject to pseudo-periodic boundary conditions and interface conditions between 

adjacent media. Here, ε  is the complex dielectric constant and k0 is the free space wave 

number. We obtain a system of Helmholtz equations which are coupled through the 

interface conditions. 

 

    This coupled system of Helmholtz equations can be reformulated using the vector form 

of the Helmholtz-Kirchoff integral theorem in terms of a coupled system of boundary 

integral equations [1.10]. Of course, the boundary integral method assumes that one can 

obtain a suitable Green’s function for the problem. For our case, following the 

development by Morse and Feshbach [1.11], it is a straightforward task to derive the 

Green’s function with the following form 

( ) ∑ ∑
∞

−∞=

∞

−∞=

+
−

=′
p q

qDjkpDjk

pq

jkR

p
yyxx

pq

e
R

errG
π4
1, ,                            (1.2) 

where 

φθ cossinkkx = ,     φθ sinsinkk y = ,                                  (1.3) 

and 

( ) ( ) ( )222 zzqDyypDxxR yxpq ′−+−′−+−′−= .                        (1.4) 

The angles θ  and φ  are the polar and azimuthal angles, respectively, of the incident 

plane wave; xD  and yD  are the periodic distances in the x and y directions, respectively; 
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0kk ε= . We note that equation (1.2) in essence is the superposition of fundamental 

solutions to the Helmholtz equation (1.1) modified by an appropriate phase factor which 

takes into account the pseudo-periodic boundary conditions. 

 

    Obviously, the form of formula (1.2) is unsuitable for carrying out the numerical 

calculations directly in most cases and converges very slow. Here, the Poisson 

summation formula [1.12] is employed to transfer (1.2) to another form easy for the 

practical numerical calculations. The Poisson summation formula is defined as 

( ) ( )∑ ∑
∞

−∞=

∞

−∞=

=
p p

pFpf απ
α

α 21 ,                                         (1.5) 

where function F is the Fourier transform of function f. This formula can sometimes be 

used to convert a slowly converging series into a rapidly converging one by allowing the 

series to be summed in the Fourier transform domain. 

 

    To obtain the needed form of doubly periodic Green’s function, the following steps can 

be taken [1.13]. Firstly, the Poisson summation formula is applied to the x coordinate of 

the three-dimensional Green’s function in (1.2) yielding 

( )

( ) ( ) x

yyxx
pq

D
pxj

y

p q
x

xx

p q

qDjkpDjk

pq

jkR

p

ezzqDyy

kk
D

pK
D

e
R

errG

π

π
π

π

2
22

2
2

0

                  

2
2

1               

4
1,

−

∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

+
−



′−+−′−⋅








−








+=

=′

∑ ∑

∑ ∑

,                      (1.6) 
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where ( )xK0  is modified second kind Bessel function of the zeroth order. Then, an 

expression equivalent to a two-dimensional Green’s function can be recovered by 

manipulation of the above expression giving 

( ) ( )

( ) ( ) xD
pxj

y

p q
x

xx
p

ezzqDyy

k
D

pkH
Dj

rrG

π

π

2
22

2
22

0

                  

2
4
1,

−

∞

−∞=

∞

−∞=



′−+−′−⋅

















+−=′ ∑ ∑

,                     (1.7) 

where ( )( )xH 2
0  is Hankel function of the second kind, zeroth order. Finally, applying the 

Poisson summation formula again, but this time to the y coordinate of (1.7), gives the 

following Poisson summation transformation form of (1.2): 

( )

( ) ( )

( ) ( )

( )
( ) yyyq

xxxpp q zyx

zzzyyyqjxxxpj

yyk
D

qjxxk
D

pj

p q

y
y

x
x

kk
D

qk
D

pzz

yx
p

kDq
kDpDD

eee

ee

kk
D

qk
D

p

e
DD

rrG

y
y

x
x

y
y

x
x

+=
+=

=

−









++








+

=′

∑ ∑

∑ ∑

∞

−∞=

∞

−∞=

′−−′−′−

′−









+′−








+

∞

−∞=

∞

−∞=

−









++








+′−−

πκ
πκγ

ππ

γκκ

ππ

ππ

2
22

              

                  

22
2

1,

22

2
22

22 2
22

,         (1.8) 

where 222 kyqxpz −+= κκγ , when 222 kyqxp <+κκ , zγ  is an imaginary number, with 

jzγ  as a positive number, and when 222 kyqxp ≥+κκ , zγ  is a positive real number. 

 

    Thus, a useful form of doubly periodic Green’s function has been obtained, which is 

convenient for numerical computation. It can be seen that formula (1.8) avoids the 
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singularity problem appearing in formula (1.2), and the analytical integration and 

differentiation are also much simpler for the formula (1.8). This periodic Green’s 

function can be applied in many EM problems, such as FSS and a large array of antenna 

elements. It will be used in Chapter 2~4 for the EM modelling of various periodic 

structures. 

 

1.3.2 Acceleration Methods of Periodic Green’s Functions 

    Besides the Poisson transformation given above, some other acceleration methods can 

be applied in efficient calculation of the periodic Green’s function, such as Kummer’s 

transformation, Shanks’ transformation, and Ewald’s method. They are outlined below. 

 

1) Kummer’s Transformation 

    The first acceleration method introduced here is Kummer’s transformation [1.14]. 

Since double sums may be evaluated by repeating evaluation of single sums as the 

process from (1.6) to (1.8), one can illustrate the idea by applying it to a single sum of the 

form 

( )∑
∞

−∞=

=
n

nfS .                                                      (1.9) 

The convergence of the series is governed by the asymptotic form of f(n) as ∞→n . 

Suppose that f(n) is asymptotic to a function f1(n): 

( ) ( )nfnf n
1 → ∞→ .                                               (1.10) 

If f1(n) is defined for all integers n, then Kummer’s transformation gives 

( ) ( ) ( )[ ] ( )∑∑ ∑
∞

−∞=

∞

−∞=

∞

−∞=

+−=
nn n

nfnfnfnf 11 .                              (1.11) 
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Generally, f1 is chosen such that the last series in (1.11) has a known closed-form sum. It 

is sufficient, however, merely to transform to it into a highly convergent series. With the 

appropriate choice of f1, the slowly converging series on the left-hand side of (1.11) is 

transformed into the sum of two highly convergent series on the right hand side. 

 

    A limitation of Kummer’s transformation is that the extension of Kummer’s 

transformation to the series solutions for lossy conductors, somewhat surprisingly proves 

to be less useful than its application to those for perfectly conducting media [1.15]. 

 

2) Shanks’ Transformation 

    Shanks’ transformation [1.16] is based on the assumption that a sequence of partial 

sums Sn (n=1, 2, ···) can be thought of as representing a “mathematical transient” of the 

form 

∑
=

+=
K

k

n
kkn qaSS

1
.                                               (1.12) 

If 1<kq , then clearly 

n
n

SS
∞→

= lim .                                                     (1.13) 

The assumed form (1.13) implies that the sequence of partial sums satisfies a (K+1)th 

order finite difference equation. It is shown in [1.16] that the repeated application of the 

transform extracts the base S (i.e., the constant solution of the finite difference equation) 

of the mathematical transient. These higher order Shanks’ transforms are efficiently 

computed by means of the following algorithm [1.17]: 

( ) ( ) ( ) ( ) L1,2,      ,1
1

111 =
−

+=
+

+−+ s
SeSe

SeSe
nsns

nsns ,                   (1.14) 



 8

where 

( ) ( ) ( ) ( )nn
nnn SeSe

SeSSe
010

10
1    ,
−

==
+

.                             (1.15) 

Only the even-order terms ( )nr Se2  are Shanks’ transforms of order r approximating S; 

the odd-order terms are merely intermediate quantities. To apply the Shanks’ transform to 

the summation of a double series, one can apply it successively to the inner and outer 

sums. 

 

    The above algorithm has the drawback that it may suffer from the cancellation errors 

(which used to happen when the method was applied to a one-dimensional sequence 

derived from the two-dimensional sequence). In that case, problem can be avoided using 

the progressive rules of the algorithm [1.18]. Another limitation of Shanks’ transform is 

that it has been observed previously to be sensitive to round-off error sometimes [1.19]. 

To avoid this, a suitable range of convergence factors should be used. 

 

3) Ewald’s method 

    Jordan et al. presented a transformation of the three dimensional periodic Green’s 

function into two exponentially converging summations [1.20]. Their development 

employed mathematical identities developed by Ewald [1.21]. The 3-D periodic Green’s 

function given by (1.2) can be written in two parts as 

( ) ( ) ( )rrGrrGrrG p ′+′=′ ,,, 21 ,                                    (1.16) 

where 
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( ) dseerrG
p q

E s

ksR
qDjkpDjk pq

yyxx∑ ∑ ∫
∞

−∞=

∞

−∞=

+−
+=′

 

0 
4

1
2

2
222

4
1,

ππ
,              (1.17) 

and 

( ) dseerrG
p q

E
s

ksR
qDjkpDjk pq

yyxx∑ ∑ ∫
∞

−∞=

∞

−∞=

∞ +−
+=′

 

 
4

2
2

2
222

4
1,

ππ
,              (1.18) 

with kx, ky, and Rpq as in equation (1.2). E is an arbitrarily chosen parameter that splits the 

computational burden between (1.17) and (1.18). The larger the value of E, the more 

weight (1.17) carries. From Ewald’s method, one can write the integral in (1.18) as 
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2
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2
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4 2

2
22

π ,                  (1.19) 

where erfc(x) is the complementary error function defined as 

( ) ∫
∞ −=
 

 

22erfc
x

u duex
π

.                                          (1.20) 

From [1.20], equation (1.17) can be rewritten as 

( ) ( ) ( )[ ] ( ) ( )( )
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where 

( )222
22
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D
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D
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D
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pq −++
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






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








+








=

ππππα ,         (1.22) 

and ∑
±

 is the summation of the positive and the negative arguments. Equations (1.17), 

(1.19) and (1.21) make the 3-D periodic Green’s function converge rapidly. This is a 
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consequence of the fact that erfc(x) behaves asymptotically as 
x

e x

π

2−

 when ∞→x  for 

( ) 43arg π<x . 

 

1.4   Cavity Green’s Functions 

1.4.1 Formulation of Cavity Green’s Functions 

    The electromagnetic radiation fields, E  and H  in a rectangular cavity, contributed by 

the electric and equivalent magnetic current distributions J  and M  located in the 

rectangular cavity may be expressed in terms of the integrals of the electric and magnetic 

dyadic Green’s functions [1.5] 

 ( ) ( ) ( ) ( ) ( ) VdrMrrGVdrJrrGjrE
V

EM
V

EJ ′′⋅′−′′⋅′−= ∫∫∫∫∫∫ ′′   
,,ωµ ,        (1.23) 

( ) ( ) ( ) ( ) ( ) VdrMrrGjVdrJrrGrH
V

HM
V

HJ ′′⋅′−′′⋅′= ∫∫∫∫∫∫ ′′   
,, ωε ,         (1.24) 

where ε  and µ stand for the permittivity and permeability of the medium, respectively; V' 

identifies the volume occupied by the sources; EJG  and EMG  are the dyadic Green’s 

function of electric (E) type produced respectively by an electric (J) and a magnetic (M) 

source inside the cavity, while HJG  and HMG  are the dyadic Green’s function of 

magnetic (H) type produced respectively by an electric (J) and a magnetic (M) source 

inside the cavity. A time dependence tje ω  is suppressed throughout. From [1.5], the 

expressions of the four dyadic cavity Green’s functions are given by 
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( ) ( )rrGrrG HMEM ′×∇=′ ,, ,                 ( ) ( )rrGrrG EJHJ ′×∇=′ ,, ,           (1.27) 

where the rectangular vector wave functions M , M ′ , N  and N ′  are given in the 1st 

edition of Tai’s book [1.22], 0δ  (=1 for m or n=0, and 0 otherwise) denotes the 

Kronecker delta, ( ) ( )222222 bnamkkk c ππγ −−=−= , ( )ωεσµεω jk −= 1  is the 

wave number in the medium, σ is the conductivity of the medium, and the coefficients are 

given below 

( )( )
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( )tj
e tzj
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e
o γ
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γ

sin2
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=′ ,                 (1.28a) 

( )tj
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−

= ,                 ( )( )
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( )tj
e tzj
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emn

b

e
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sin2
,

+

−+=′ m ,                 (1.28b) 

and the upper-lower and left-right notation of ( )( )−+ m  is designated for the subscript and 

superscript ( )( )NMEJ
HM   . Here, a, b, and t are, respectively, the length, width and 
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thickness of the considered cavity. As for the coordinate setting, one bottom corner point 

is located at ( )bz,0,0 . From the above expressions of dyadic Green’s functions, we can 

derive any components needed in a specific problem, as done in the following chapters. 

  

1.4.2 Different Expressions of Cavity Green’s Functions 

    The above electric and magnetic cavity Green’s functions can all be derived from 

vector potential Green’s functions for the rectangular cavity, which are given by the 

following form [1.22]: 

AzzAyyAxxA GzzGyyGxxG ˆˆˆˆˆˆ ++= ,                                   (1.29) 

 FzzFyyFxxF GzzGyyGxxG ˆˆˆˆˆˆ ++= ,                                   (1.30) 

where the subscript A and F designates the magnetic and the electric vector potential, 

respectively. Each component of the dyadic Green’s functions can be expressed in two 

forms [1.6]. One is the spectral representation in terms of modal functions of the cavity, 

and the other is the spatial expansion in terms of images produced by the cavity walls. 

Without universality, only the AxxG  component will be presented here for brevity. 

 

1) Modal Expansion of the Potential Cavity Green’s Function 
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where 






≠

=
=

0   ,2

0   ,1

i

i
iε , and 2

222
2 k

t
p

b
n

a
m

mnp −







+








+








=

πππα . 

 



 13

2) Image Expansion of the Potential Cavity Green’s Function 
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1.4.3 Acceleration Method of Cavity Green’s Functions 

    From [1.11], the image expansion of the cavity Green’s function can be divided into 

the following two series according to the identity derived by Ewald [1.20] [1.21]: 

     21 AxxAxxAxx GGG += ,                                         (1.33a) 
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where E is an adjustable parameter in the Ewald’s method. The 1AxxG  and 2AxxG  can be 

converted into the following closed-form: 
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where [ ]ARe  designates the real part of a complex number A. Clearly, the 1AxxG  series is 

exponentially convergent, and the 2AxxG  series is also very rapidly convergent due to the 

presence of the complementary error function as described in previous Section 1.3.2. 
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Chapter 2 Modelling of a Thick Perforated Plate Using Periodic 

and Cavity Green’s Functions 

 

2.1  Introduction 

    A periodically perforated perfectly electrically conducting (PP-PEC) plate has been 

widely used in many applications, such as microwave filters, bandpass radomes, artificial 

dielectric, antenna reflectors, and ground planes [1]. In these applications, it is essential 

to accurately predict the transmission and reflection properties of this structure. Although 

thin perforated sheets are satisfactory for most applications, thick perforated plates are 

preferred in many cases to enhance the strength and hardness of the structure, to improve 

the bandpass filter characteristics, or to avoid radiation hazards due to leakage from 

microwave sources [2.1]. A thick perforated plate exhibits a steeper cutoff between the 

stop and the passband frequency, which is significant in the design of metallic mesh 

filters or fenestrated radomes. The thick screen also finds practical applications in 

problems associated with the radiation hazards due to leakage through reflective surfaces 

on low-noise antennas.  

 

    So far, the electromagnetic wave scattering by the thin PP-PEC sheets has been 

extensively investigated both theoretically and experimentally. In the early theoretical 

models, Kieburtz and Ishimaru used a variational approach [2.2], Chen and Lee 

represented the apertures in the metal as an infinite 2-D array of waveguides [2.3-2.5]. 

Later, many other researchers contributed to modelling this structure using the method of 
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moments [2.6-2.9]. All the above numerical models considered the thickness of the 

perforated screen to be zero. In some applications, a thick screen is desired, such as solar 

power filters [2.10], because it has a sharper stopband cutoff than does a thin screen. This 

structure was first studied by Chen [2.1] and later by McPhedran and Maystre using 

modal formula [2.10]. Based on spectral Green’s functions and spectral equivalent 

surface current, Chan presented a mixed spectral-domain approach to analyze frequency 

selective surfaces (FSS) with various apertures including the effects of dielectric loading 

[2.11]. 

 

    Here, a theoretical method based on periodic and cavity Green’s functions is presented 

to model the thick infinite periodically perforated perfectly electrically conducting (TIPP-

PEC) plate, which has been shown its validity when the plate material has a high 

conductivity. The PEC cavities are employed to model the perforated regions, while 

Galerkin’s method of moments procedure is used to discretize the field integral equations 

for the equivalent magnetic currents representing a double-periodic array of rectangular 

apertures, where the basis and testing functions are Chebyshev polynomials and their 

associated weights. This method is straightforward and simple without use of Fourier 

transform and its computation time is moderate. The calculated results will be illustrated 

and compared with experimental data and the numerical data from previous accurate 

method. The effects of the screen thickness, aperture dimensions, and incident wave on 

the scattering properties will also be discussed. 
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2.2  Formulation 

    Considering the geometry depicted in Fig. 2-1, the apertures periodically perforated on 

a PEC plate of thickness t are rectangles of dimensions ba 22 × . The origin of the 

coordinate system lies in the center of the 00th lower aperture. The entire structure 

exhibits periodicity xD  in the x-direction and yD  in the y-direction. The incident plane 

wave is illuminated upon the PEC plate at an angle θ  off the z-direction and an angle φ  

off the x-direction. In this case, an aperture on the PEC plate is equivalent to two 

magnetic currents M  and M ′ , which reside respectively at an infinitesimal distance 

above and below the aperture. And, the equivalence theorem allows MM −=′ . Hence, 

the equivalent magnetic currents 1M  (= yx MyMx 11 ˆˆ + ) and 2M (= yx MyMx 22 ˆˆ + ) at the 

pqth upper and lower outer interfaces of the rectangular holes are found by enforcing the 

continuity of magnetic field across the apertures 

Across the pqth upper aperture ( tz = ): 

                      ( ) ( )pq
u

pq
u

qp
pq

uinc
MHMHMHH ,2tan,1tan

,
,1tantan −+−=








+ ∑                          (2.1) 

Across the pqth lower aperture ( 0=z ): 

                      ( ) ( ) 







=−+− ∑

qp
pq

l
pq

l
pq

l
MHMHMH

,
,2tan,1tan,2tan                                (2.2) 

where 
inc

H tan  is the tangential components of the incident wave. The superscripts u and l 

denote the fields at upper and lower interfaces in Fig. 2-1. 
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Fig. 2-1 A thick periodically perforated conducting plane. 
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Fig. 2-2 Equivalent magnetic currents at the upper and lower apertures of a perforated 

region. 
 

    The magnetic field due to the equivalent magnetic currents above the upper apertures 

and below the lower apertures can be derived as following 

( ) ii
qp

pqi FjFjMH ω
ωµε
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( ) ( ) SdrrGrMF pS
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,
4  

00,
π
ε                                          (2.4) 
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where ( )rM pqi ′,  is the equivalent magnetic current above the pqth upper aperture (i=1) 

and below the pqth lower aperture (i=2), as shown in Fig. 2-2. When the screen is 

illuminated by plane waves, the relationship between the magnetic currents is 

                  yqDyjkxpDxjk
ipqi eeMM   00,, =                                            (2.5) 

where φθ cossinkkx = , φθ sinsinkk y = , k  is the wave number, θ  and φ  stand for the 

polar and azimuthal angle of the incident plane wave. iF  is the electric vector potential, 

and ( )rrGp ′,  is the 3-D periodic Green’s function [2.12]: 

( ) yyxx

pq
qDjkpDjk

p q pq

jkR

p ee
R

errG ∑ ∑
∞

−∞=

∞

−∞=

−
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π4

,                                    (2.6) 

where ( ) ( ) ( )222 zzqDyypDxxR yxpq ′−+−′−+−′−= . Applying Poisson summation 

formula [2.8] to (2.6), we get 

              ( )
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where 222 kyqxpz −+= κκγ . When 222 kyqxp <+ κκ , zγ  is an imaginary number, and 

when 222 kyqxp ≥+ κκ , zγ  is a real number. Thus, the tangential part of magnetic fields 

due to the equivalent magnetic currents above the upper apertures and below the lower 

apertures can be expressed by 

     ( ) ( ) ( ) ydxdyyxxGyxMk
k

jMH pS
i

qp
pqi ′′′−′−′′⋅∇∇+−=
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where ( )yyxxGp ′−′− ,  can be obtained by setting zz ′=  in (2.7). 
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( )1tan MH
u

− , ( )2tan MH
u

− , ( )2tan MH
l

−  and ( )1tan MH
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−  can be obtained by calculating 

the tangential part of magnetic field in a rectangular cavity contributed by the 

corresponding magnetic current distribution inside the cavity: 
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where HMG  is the dyadic Green’s function of magnetic (H) type produced by a magnetic 

(M) source inside the cavity [2.13]. In this problem, only four components of HMG  may 
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where 0δ (= 1 for s or l = 0, and 0 otherwise) denotes the Kronecker delta, 

( ) ( )222222 22 blaskkk c ππγ −−=−= . 

  

    To solve the integral equations in (2.1) and (2.2), we expand the equivalent magnetic 

current by means of a set of basis functions. Because entire domain functions which 

incorporate edge singularity require much fewer unknowns than subsectional basis 

functions or functions that do not incorporate edge singularity [2.14-2.15], the following 

basis function forms are selected: 
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where iT  and iU  are, respectively, ith-order Chebyshev polynomials of the first and 

second kind, while nm
xM  and nm

yM  are the unknown coefficients to be determined. 

Putting (2.8) and (2.10) into the integral equations (2.1) and (2.2) for the 00th upper and 

lower apertures, we get 
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    With help of (2.7), (2.16) and (2.17), using Galerkin’s method of moments, and 

transferring the vector equations into the scalar equations, we get 
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The equations (2.20-2.23) can be expressed as a matrix equation form by 
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Assuming that the numbers of basis functions in x- and y-direction are both N, then 

( )[ ]vvAwY ′ , ( )[ ]vvBwY ′ , ( )[ ]vvCwY ′ , and ( )[ ]vvDwY ′  (w=1,2,3,4) are all N×N matrices. Putting (2.7) 

and (2.11-2.14) into (2.20-2.23), and with help of the following integrals [2.16]: 
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and following triangular transforms 
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the analytical results of the admittance matrix elements can be obtained and the elements 

of the 16 sub-matrix in (2.24) have the following forms, respectively: 
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( ) ( )vvCvvA YY ′′ = 13 , ( ) ( )vvDvvB YY ′′ = 13 , ( ) ( )vvAvvC YY ′′ = 13 , ( ) ( )vvBvvD YY ′′ = 13                (2.36) 

( ) ( )vvCvvA YY ′′ = 24 , ( ) ( )vvDvvB YY ′′ = 24 , ( ) ( )vvAvvC YY ′′ = 24 , ( ) ( )vvBvvD YY ′′ = 24               (2.37) 
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nJ  is the nth-order Bessel function of the first kind. Similarly, the elements of incidence 

vector matrix [ ]nm
xI  and [ ]nm

yI  can be calculated. As an example, when the incident plane  

wave is jkzexH −= ˆ , [ ]

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2.3  Results and Discussions 

2.3.1 Convergence Consideration 

First, we consider a 025.0 λ -thick perforated conducting plate with 00 0.10.1 λλ ×  

apertures and a periodicity of 05.1 λ== yx DD  illuminated by an incident plane wave 

jkzinc
exH −= ˆ , where 0λ  is the wavelength in free space. In Table 2-1, the power 

transmission coefficient τ  (transmitted power divided by incident power) is shown for 

differing NNN yx == , where xN , yN  are the number of basis functions in (2.16), 

(2.17), and (2.20-2.39). The transmission converges to three digits of accuracy for 

26== yx NN . In Fig. 2-3 (a) and (b), the relative errors of an element of the 

copolarization admittance matrix 1AY  are illustrated for varying P and Q, or S and L. Here, 

P, Q, S and L are separately the truncated values of p, q, s and l. The admittance element 

corresponds to 0=′==′= mmnn . As for this element, the real part does not vary with 

P, Q, S and L when these parameters are natural numbers, so we set the relative error to 
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be ( ) ( )exacttrunctedexact YYY Im− .  The exactY  is determined by setting 1000== QP  and 

600== LS . 

 

TABLE 2-1 Convergence of power transmission coefficient. 

NNN yx ==  22  24  26  28  
τ  0.046 0.335 0.329 0.329 
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Fig. 2-3 (a) The relative error of the admittance element corresponding to 
0=′==′= mmnn  versus LS = . 
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Fig. 2-3 (b) The relative error of the admittance element corresponding to 
0=′==′= mmnn  versus QP = . 

 
 

 
Fig. 2-4 (a) The magnitude of xM1  (upper interface) normalized with respect to incident 

electric field. 
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Fig. 2-4 (b) The magnitude of xM 2  (lower interface) normalized with respect to incident 

electric field. 
 
2.3.2 Results and Discussions 

    The magnitudes of the upper and lower equivalent magnetic currents in the x-direction 

xM1  and xM 2  normalized with respect to incident electric field jkzinc
eyE −= ηˆ  are 

illustrated in Figs. 2-4 (a) and (b). The number of basis functions is 26=N , which means 

that for the coefficients nm
xM  and nm

yM  in (2.16) and (2.17) 5,0 ≤≤ mn , and in (2.20-

2.39) 5,,,0 ≤′′≤ mmnn .  

 

    In Fig. 2-5, the power transmission coefficient τ  versus periodicity is presented. The 

magnetic field jkzinc
exH −= ˆ  is incident on an array of square apertures (a=b) with a 

periodicity of yx DD = . The ratio of aperture size to periodicity is held at 39.0=xDa , 

and the ratio of screen thickness to periodicity is fixed at 1.0=xDt . The power 
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transmitted is compared to the measured data from [2.17]. It can be seen that this method 

comes close to predicting the actual transmission and the significant shift of the 

frequency at maximum transmission from the nominal value of 01λ . The reasons of the 

shift have been explained by Durschlag and DeTemple in [2.17]. The relatively larger 

difference between numerical results and experimental data for larger aperture size cases 

( 095.0 λ>xD ) can be due to the experimental setup, which has also been analyzed in 

[2.17]. Compared with the zero-thickness screen model, the thick screen model derived 

above shows an improved agreement with the measured results. Fig. 2-6 illustrates the 

comparison between the calculated results from the presented method and the method 

provided by McPhedran et al. [2.18], which has depicted an excellent agreement. The 

screen geometry parameters in Fig. 2-6 are yx DDba 45.045.0 === , and xDt 25.0= .  
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Fig. 2-5 The magnitude of the power transmission coefficient versus periodicity xD . The 

aperture dimensions are xDba 39.0== . The screen thickness xDt 1.0= . 
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Fig. 2-6 The magnitude of the power transmission coefficient versus periodicity xD . The 

aperture dimensions are xDba 45.0== . The screen thickness xDt 25.0= . 
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Fig. 2-7 The effects of screen thickness for different aperture dimensions. 
 
    Fig. 2-7 shows the effects of the screen thickness on the transmission power. The four 

plots shown in Fig. 2-7, respectively, correspond to four cases of aperture dimensions and 



 34

array periodicities. The ratio of aperture size to periodicity is held at 
3
1

== xx DbDa . 

The incident plane wave is jkzinc
exH −= ˆ . When the aperture dimensions are small so 

that there is no propagating mode in perforated regions, the power transmitted is only 

produced by the attenuating modes, and the transmission coefficient decreases 

monotonically with thickness, as shown for the 00 2.02.0 λλ ×  and 00 4.04.0 λλ ×  aperture 

cases. In these two cases, the incident waves are totally reflected if the plate is 

sufficiently electrically thick.  
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Fig. 2-8 (a) The effects of incidence angles on the transmission power for parallel 

polarization. 
 
    The transmissibility of a perforated plate depends on both the polarization and the 

angle of incidence. Fig. 2-8 (a) and (b) separately illustrate the effects of incidence angles 

on the transmission power for parallel and perpendicular polarizations. Here, the parallel 

polarization is referred to the case that the direction of incident electric field lies in the 
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plane of incident waves; similarly for perpendicular polarization, the direction of incident 

electric field is normal to the plane of incident waves. The screen geometry parameters 

are 05.0 λ== ba , 05.1 λ== yx DD , 025.0 λ=t .  
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Fig. 2-8 (b) The effects of incidence angles on the transmission power for perpendicular 

polarization. 
 
    To study the effects of aperture size on the transmissibility, we fix the value of a to be 

05.0 λ , and vary the value of b, as shown in Fig. 2-9. The incident plane wave is 

jkzjkzinc
eyexH −− += ˆˆ , and the screen is a 025.0 λ -thick perforated plate with a 

periodicity of 05.1 λ== yx DD . 

 

    If we fix the screen geometry, but fill the periodically perforated regions with dielectric, 

the scattering properties of the plate will change with the dielectric constant, as shown in 
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Fig. 2-10. The geometry parameters are 05.0 λ== ba , 05.1 λ== yx DD , 025.0 λ=t , and 

the incident plane wave is jkzinc
exH −= ˆ . 

 

    The aperture arrangement can also influence the scattering properties of the perforated 

screen. In Fig. 2-1, when o90≠β , that can be achieved by adjusting 2s  direction away 

from y direction, yD  should be modified to be βsin2sy DD =  in this case, and yqκ  in (2.7) 

and the following corresponding formulae should be modified as [2.2] 

β
ππκ
tan

22

x
y

y
yq D

pk
D

q
−+=                                          (2.40) 

The power transmission coefficient differing with the value of β  is shown in Fig. 2-11. 

The screen geometry parameters are 05.0 λ== ba , 021 5.1 λ=== sxs DDD , 025.0 λ=t . 

The incident plane wave is jkzinc
exH −= ˆ . 
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Fig. 2-9 The magnitude of the power transmission coefficient versus aperture width. 
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Fig. 2-10 The magnitude of the power transmission coefficient versus dielectric constant. 
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Fig. 2-11 The effects of aperture arrangement on the transmission power. 
 

2.4  Conclusions 

    A method is developed for modeling a TIPP-PEC in spatial domain. This method is 

based on periodic and cavity Green’s functions, in conjunction with an integral equation 
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formulation. The entire-domain Galerkin’s technique is used to solve the magnetic field 

integral equations, which has been proven very efficient when specific geometries are 

considered and appropriate basis functions are selected. A very good agreement between 

the results of this approach and those available data in literature has been shown, which 

has demonstrated the applicability and correctness of the present approach. The full wave 

analysis and formulation in this paper are conducted in the spatial domain, so the 

procedure is more straightforward and simpler. Lossy or lossless materials may be filled 

in the cavities for more flexible features. Although this model has been discussed in the 

context of rectangular apertures, it can be generalized to apertures of other shapes. 
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Chapter 3 Modelling of Infinite Probe-Excited Cavity-Backed 

Aperture Array 

 

3.1  Introduction 

    Cavity-backed aperture or slot antenna and array are proposed by many researchers 

due to their attractive features, such as low profile and high efficiency [3.1-3.3]. To excite 

the cavity-backed aperture, several methods can be used including microstrip feed and 

coaxial feed at the center of the aperture or slot. It was indicated that the microstrip 

feeder suffers from the conduction and dielectric loss while the direct coaxial feeder is 

not appropriate for applying to the slot array [3.4]. Here the linear electric probe is 

chosen to excite the apertures. This feeding structure is simple, free from conduction and 

dielectric loss, high power handling and suitable for slot array application. 

 

    So far, a theoretical model has not been found in literatures to analyze this kind of 

infinite array accurately and completely. In this chapter, we present an entire-domain 

Galerkin’s method analysis for the probe-excited cavity-backed aperture array, 

combining the spatial domain cavity Green’s function and periodic Green’s function. 

This method is straightforward and simple without use of Fourier transform; its 

computation time is moderate compared with other full wave methods since the closed- 

form results can be obtained.. 
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Fig. 3-1 The unit cell geometry of a rectangular cavity-backed probe-fed aperture array. 
 

3.2  Formulation 

    A general problem of a rectangular aperture array of arbitrary aperture location and 

size configuration, backed by rectangular cavities, and fed by the probes inside the 

cavities is considered. The unit cell geometry of the periodic array is depicted in Fig. 3-1. 

The probes, cavities, and ground plane are assumed perfect conductors, and the upper 

cavity wall thickness is assumed negligible. The integral equations can be established for 

unknown magnetic currents over the apertures and electric currents on the probes, based 

on the equivalence theorem and enforced by the boundary conditions across the apertures 

and on the probes. 

Across the pqth aperture ( tz = ): 
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( ) ( )pqpq
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pq JHMHMH tantan
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∑ .                              (3.1) 

On the pqth probe: 

( ) ( ) inc
pqpqpq EJEME tan,tantan −=+−                                        (3.2) 

where 
inc

pqE tan,  is the tangential part of incident electric field in the pqth cavity. Here, the 

driving source is assumed to be a delta-gap generator, so 
inc

E 00  is taken to be 

( ) ( )
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 ==

=
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ffinc yyxxzz
zyxE

δ
                                   (3.3) 

where ( )ff yx ,  is the location coordinate of the 00th feeding probe. The tangential part of 

the magnetic fields due to the equivalent magnetic currents above the apertures can be 

expressed as follows: 

     ( ) ( ) ( ) ydxdyyxxGyxMk
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jMH pS
qp

pq ′′′−′−′′⋅∇∇+−=









∫∫∑ ′

,,2
00

2

,
tan

η
           (3.4) 

where ( )yyxxGp ′−′− ,  can be obtained by setting zz ′=  in the spectral domain form of 

the 3-D periodic Green’s function [3.5]. 
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where φθ cossinkkx = , φθ sinsinkk y = , 222 kyqxpz −+= κκγ , xD  and yD  are 

respectively the periodicity in x- and y-direction. Here, ( )φθ ,  indicates the scan angle of 

the infinite array, and ( )0,0  denotes the broadside. The terms, ( )MH −tan , ( )JH tan , 

( )ME −tan  and ( )JE tan , can be obtained by calculating the tangential part of the magnetic 
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and electric fields in a rectangular cavity, which are respectively contributed by the 

corresponding magnetic currents and electric currents inside the cavity and expressed by: 

                            ( ) ( ) ( ) VdrMrrGjMH
V

HM ′′⋅′=− ∫∫∫ ′
,ωε                                    (3.6) 

                            ( ) ( ) ( ) VdrJrrGJH
V
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,                                           (3.7) 

                            ( ) ( ) ( ) VdrMrrGME
V

EM ′′⋅′=− ∫∫∫ ′
,                                        (3.8) 

                            ( ) ( ) ( ) VdrJrrGjJE
V

EJ ′′⋅′−= ∫∫∫ ′
,ωµ                                       (3.9) 

where HMG  and HJG  are the dyadic Green’s function of magnetic (H) type produced 

respectively by a magnetic (M) and an electric (J) source inside the cavity, while EMG  

and EJG  are the dyadic Green’s function of electric (E) type produced respectively by a 

magnetic (M) and an electric (J) source inside the cavity [3.6]. In this problem, four 

components of HMG  are needed, i.e. xxHMG , , xyHMG , , yxHMG , , and yyHMG , . They can be 

expressed as 
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where 


 =

=
otherwise0

0orfor1
0

ls
δ  and ( ) ( )222222 22 blaskkk c ππγ −−=−= , which are 

also applicable to the equations (3.20) - (3.24). 

 

    The equivalent magnetic currents on the 00th aperture are expanded in the following 

basis functions: 
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where ( )aa yx ,  is the center coordinate of 00th aperture, Ti and Ui are, respectively, the 

ith-order Chebyshev polynomials of the first and second kind, while nm
xM and nm

yM  are 

the unknown coefficients to be determined. 

 

    The probe for each element of the array is assumed to consist of a cylindrical perfectly-

conducting tube of radius and vanishing wall thickness, bottom-fed by an ideal voltage 

source. Since the probe radius is small, a filamentary current approximation is made. That 

is, the field arising from J  is assumed to result from a volume current density given by 

( ) ( ) ( )ffz yyxxzIz −− δδˆ                                            (3.16) 
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However, J  itself is assumed to be of the form: 
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zIzzyxJ −= δ

π2
ˆ,,                                          (3.17) 

where 

( ) ( )22
ff yyxxr −+−=                                           (3.18) 

and fr  is the probe radius. Thus, the effect of the probe radius is included in the analysis. 

( )zI z  is expanded in the following entire-domain basis functions: 

( ) ( ) hzz
h

wIzI
W

w
wz ≤≤







 +
= ∑

=

0 ,21cos
0

                                (3.19) 

where h is the length of the feeding probes, and Iw are the unknown coefficients to be 

determined. This probe model is exact only for array elements consisting of tubes with 

infinitesimally thin walls but should offer a good approximation for any element of small 

cross section. 

 

   In equations (3.7), (3.8) and (3.9), two HJG  components, two EMG  components and 

one EJG  component are needed, i.e. xzHJG , , yzHJG , , zxEMG , , zyEMG ,  and zzEJG , . They can 

be expressed as 
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where ( ) ( )222222 2 tlbskkk c ππγ −−=′−=′ . Using the Galerkin’s method of moments 

procedure, the integral equations in (3.1) and (3.2) are discretized and a matrix equation 

for the unknown coefficients is thus obtained as 
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The elements of 9 sub-matrices have the following forms respectively: 
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and Ji is the ith-order Bessel function of the first kind, superscript T represents matrix 

transpose. 

 

3.3  Results and Discussions 

3.3.1 Convergence Consideration 



 49

    The numerical results are firstly demonstrated for the entire aperture case, where the 

entire cavity aperture is chosen to be the radiating element. The probe locations are 

chosen to be at the bottom centers of the cavities which they reside in. And without 

additional specification, the array scan direction is at broadside. 

 

We consider an infinite array with 0.25λ-long feeding probes. Each cavity aperture 

dimension (2a×2b) is 1.0λ×1.0λ, the periodicities Dx= Dy =1.5λ, and cavity depth 

t=0.3λ. Table 3-1 shows the convergence of input impedance with the number of basis 

functions used to expand the probe current. For the number of basis functions used to 

expand the equivalent magnetic currents on the apertures, the convergence issue has 

already been considered in the relevant scattering problem [3.6], and it will not be shown 

here. Table 3-2 illustrates the convergence of the matrix element value (YA1(11)) with the 

truncated values of a cavity Green’s function component ( zzEJG , ). For other relevant 

cavity Green’s function components and periodic Green’s function, the convergence has 

been considered similarly and some of the results have already been shown in [3.7]. 

 

Table 3-1 Convergence of input impedance with probe current basis function number. 

W Zin(ohms) 

3 21.1211-j18.1955 

5 21.0421-j17.9398 

7 21.0042-j17.7915 

9 20.9820-j17.6915 
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Fig. 3-2 (a) Comparison of the probe input resistance between array results from our 

method and single element results from IE3D 9.1 simulation. 

 

0.22 0.23 0.24 0.25 0.26 0.27 0.28
-40
-20

0
20
40
60
80

100
120
140
160

In
pu

t R
ea

ct
an

ce
 (Ω

)

h /λ

 Array Results by Our Method
 Single Element Results

          by IE3D Simulation

  
Fig. 3-2 (b) Comparison of the probe input reactance between array results from our 

method and single element results from IE3D 9.1 simulation. 
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Table 3-2 Convergence of the matrix element value (YA1(11)) with the truncated values of 
a cavity Green’s function component ( zzEJG , ). 

T S Matrix Element Value 

20 600 j10.6290 

50 600 j11.4154 

100 600 j11.6005 

200 600 j11.6644 

300 600 j11.6775 

350 600 j11.6804 

350 300 j11.7326 

350 400 j11.7058 

350 500 j11.6903 

350 600 j11.6804 

 

3.3.2 Input Impedance, Current Distributions, Reflection Coefficient, and Active 

Element Pattern 

Since no previous experimental or computational results for this kind of array were 

found in literature and limited by the experimental condition, to have an independent 

check of the developed numerical code, the probe input impedance for an infinite array 

with large periodicities in both x- and y-directions (whose coupling effect is relatively 

small) is computed, and compared with the results of a single element case from IE3D 

9.1 simulation by varying the electric dimensions of feeding probes and backed cavities. 

The ratios between probe length h and cavity dimensions are fixed to be a=b=0.96h, t= 

1.02h. For the periodicities, which are not contained in the single element simulation, we 

fix their electric lengths to be Dx= Dy =1.51λ. This fixed relatively large periodicity value 

makes the coupling effect between array elements almost constant and small compared 
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with the element structure effect itself. The comparisons are shown in Figs. 3-2 (a) and (b) 

for the real and imaginary parts of input impedance respectively. Good agreement is 

observed concerning the reactance, taking into consideration the coupling effect. For the 

resistance, a constant gap is observed between the array results and single element results, 

because the radiated energy is mainly indicated by the resistance so that the coupling 

affects it more than reactance. Also, we can find that when the electric dimension of 

probe length increases, the aperture size increases too, and the adjacent aperture edges are 

closer, so coupling effect is more significant and the agreement is beginning to degrade 

for large aperture cases. 
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Fig. 3-3 Probe input impedance varying with cavity depth.  
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Fig. 3-4 Probe input impedance varying with cavity aperture size. 
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Fig. 3-5 Probe input impedance varying with periodicity.  
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    After the above comparison and validation, we give out some figures to show the 

effects of cavity depth, aperture size, and periodicity for the infinite probe-excited cavity-

backed aperture array. The probe length is fixed to be h=0.233λ in Figs. 3-3 ~ 3-5. In Fig. 

3-3, the probe input impedance versus cavity depth is shown. The aperture size is 0.66λ×

0.66λ, and the periodicities are Dx= Dy =1.51λ. We notice that when the backed cavities 

get deeper, both real and imaginary parts of the input impedance decrease, more source 

energy is reflected back and cannot radiate out. Fig. 3-4 illustrates the effects of aperture 

size on input impedance for an entire square aperture case. The cavity depth and 

periodicities are fixed to be t=0.238λ and Dx= Dy =1.51λ. A resonant condition is 

obtained when the aperture size (2a×2b) is around 0.764λ×0.764λ. In Fig. 3-5, the input 

impedance versus periodicity (Dx= Dy) is shown. The cavity depth and aperture size are 

fixed to be t=0.238λ and 0.66λ×0.66λ. It can be noticed that when the periodicity is less 

than 1λ, the real part of input impedance is nearly zero, the probe is like an inductor and 

most of the source energy cannot radiate out. This indicates that the coupling effects will 

dominate the array radiated energy when the periodicity is no larger than 1λ. 

 

    Figs. 3-6 (a) and (b) show the amplitude and phase of probe electric current 

distribution ( )zI z  for the array with three probe lengths 0.15λ, 0.25λ and 0.29λ. The 

cavity aperture dimensions (2a×2b) are 1.0λ×1.0λ, the periodicities are Dx= Dy =1.5λ, 

and cavity depth is t=0.3λ. It can be seen that the amplitude of probe current has a basic 

( )[ ]zhk −sin  variation. For short probes ( λ15.0≤h ), we can see the probe current is 

almost a linear function of z, which is expected since ( )[ ] ( )hzkhzk −≈−sin  when 

15.0≤λh . Figs. 3-7 (a) and (b) illustrate the real and imaginary parts of the equivalent 
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magnetic currents over the cavity apertures, respectively. The probe length is h=0.25λ, 

and other dimensions are the same as those in Figs 3-6 (a) and (b). 
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Fig. 3-6 (a) Probe current amplitude distribution with parameter: λh =0.15, 0.25, 0.29. 

 
 

0.00 0.05 0.10 0.15 0.20 0.25 0.30
-80
-60
-40
-20

0
20
40
60
80

Pr
ob

e 
Cu

rre
nt

 P
ha

se
 (d

eg
re

e)

z /λ

 h = 0.15λ
 h = 0.25λ
 h = 0.29λ

 
Fig. 3-6 (b) Probe current phase distribution with parameter: λh =0.15, 0.25, 0.29. 
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Fig. 3-7 (a) The real part of the equivalent magnetic current in the x direction above the 

00th cavity aperture. 
 

 
Fig. 3-7 (b) The imaginary part of the equivalent magnetic current in the x direction 

above the 00th cavity aperture. 
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    The scan performance of the infinite array is evaluated by calculating the reflection 

coefficient against the scan angle, as carried out in [3.8] using 

( ) ( ) ( )
( ) ( )0,0,

0,0,,
∗+

−
=

inin

inin

ZZ
ZZR

φθ
φθφθ                                        (3.39) 

where ( )0,0inZ  is the input impedance of the feeding probe at broadside. In the calculated 

example here, the array is chosen near its resonance, which means its input impedance at 

broadside is almost purely resistive. Figs. 3-8 (a) and (b), respectively, show the 

reflection coefficient amplitude and phase in two planes versus scan angle for an infinite 

probe-excited cavity-backed aperture array. (The “D plane” is an intercardinal plane with 

°= 45φ .) Since the feeding probes are located at the cavity bottom centers, the reflection 

coefficient in the y-z plane is the same as that in the x-z plane. The reflection coefficient 

amplitude is zero at broadside and increase as the beam is scanned due to the probe 

impedance variation. The cavity aperture dimensions (2a×2b) are 0.764λ×0.764λ, the 

probe length is h=0.233λ, the periodicities are Dx= Dy =1.51λ, and the cavity depth is 

t=0.238λ. The normalized active element gain pattern ( )φθ ,G  is related to the reflection 

coefficient as 

( ) ( ) θφθφθ cos,1,
2



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 −= RG                                         (3.40) 

To get the final active element gain pattern, we still need to know the element gain at 

broadside Gb. The averaged far field radiated power in a yx DD ×  region can be 

calculated by means of the usual expression 
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1η                                           (3.41) 

where the magnetic field in the far zone can be calculated by 
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Here, ( )rrGp ′,  is the 3-D periodic Green’s function  
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With the equivalent magnetic current, we can easily calculate the far zone radiated power. 

And the averaged input power can be got by 

      
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                                                 (3.44) 

For the broadside array, ( )0,0inin ZZ = , so the active element gain is 

in

r
b P

P
G =                                                        (3.45) 

Multiplying Gb by ( )φθ ,G , the active element gain pattern can be obtained. In Fig. 3-9, 

the active element gain patterns versus scan angle are shown in the two planes, and the 

array dimensions are the same as those in Figs. 3-8 (a) and (b). It can be seen that in the 

D plane, there occurs a serious scan attenuation when the scan angle is around 30º. 
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Fig. 3-8 (a) Reflection coefficient amplitude of the infinite probe-excited cavity-backed 

aperture array. 
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Fig. 3-8 (b) Reflection coefficient phase of the infinite probe-excited cavity-backed 

aperture array. 
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Fig. 3-9 Normalised active element gain pattern of the infinite probe-excited cavity-

backed aperture array. 
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Fig. 3-10 Probe input impedance varying with cut aperture width. 

 
    Next, we consider a more general case, the aperture cut on the cavity upper wall 

smaller than the entire cavity upper surface. The feeding probes are still at the cavity 
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bottom centers. In Figs 3-10 and 3-11, the cavity and probe dimensions are the same as 

those in Fig. 3-9, and the periodicities are Dx= Dy =1.51λ. In Fig. 3-10, the length ( ab ) of 

the cut aperture is fixed to be 0.25λ, and the probe input impedance varies with the 

aperture width ( aa ). A resonant condition occurs when the aperture width is a little 

smaller than 0.175λ. Fig. 3-11 illustrates the effects of cut slot (aperture) location on the 

input impedance. In Fig. 3-11, the slot length is λ25.0=ab , the slot width is 

λ024.0=aa , and the center of the 00th slot is at ( )0,ax . 
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Fig. 3-11 Probe input impedance varying with cut aperture location. 

 

3.4  Conclusions 

    Based on the spatial domain cavity Green’s function and periodic Green’s function, we 

have presented an entire-domain Galerkin’s procedure for the accurate and efficient 

modelling of infinite probe-excited and cavity-backed aperture array. The array results 
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from our method are compared with single element results from IE3D simulation, and the 

effects of different structure parameters are discussed. 
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Chapter 4 Modelling of Infinite Planar Dipole Array with a 

Periodically Excavated Ground Plane 

 

4.1  Introduction 

    Large planar phased array of thin conducting radiators has been found to have many 

applications as corporate fed antennas and as lenses. Their attractiveness is due, in part, 

to light weight and low cost. Since the properties of all but the outermost elements of a 

large array are similar to those of an element in an infinite array environment (except 

when a grating lobe of the array is near endfire), studies of the analytically convenient 

infinite array structures are common [4.1-4.3]. 

 

    It has been noticed that the existing methods are mainly applied to the infinite array 

without a ground plane or with a planar ground plane. In some cases, the ground plane 

may not be purely planar but with periodically arranged cavities or holes, due to some 

natural or artificial reasons. So far, the analysis for the array with this kind of ground 

plane has not been found in literatures. 

 

    Here, a full wave analysis is presented for the infinite planar dipole array with a 

periodically excavated (but not perforated) ground plane. This method is based on the 

periodic and cavity Green’s functions, and entire-domain Galerkin’s technique is used to 

solve the integral equations. The numerical results from the present method are compared 

with those from previous methods in literatures for some special cases, which can be used 

to validate the accuracy of this method. Also, the properties of this kind of array are 
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shown and discussed. The present method can be easily extended to the case of a ground 

plane with periodically perforated holes. 

2a
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Dy

d

z y

x
ld

 

Fig. 4-1 The geometry of the dipole array above a ground plane with periodically 
arranged concave cavities.  

 
4.2  The Dipole Array above a Ground Plane with Periodically    

       Arranged Concave Rectangular Cavities 

 

4.2.1 Formulation  

    The geometry of the antenna array with ground plane under consideration is shown in 

Fig. 4-1. Each element of the array is assumed to be a thin perfectly conducting dipole, 

center-fed at a gap of infinitesimal width by an ideal voltage source. The cavity walls and 

ground plane are assumed perfect conductors. The integral equations can be established 

for unknown magnetic currents over the cavity apertures and electric currents on the 

dipoles, based on the field equivalence theorem and enforced by the boundary conditions 

across the apertures and on the dipoles. 
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On the pqth dipole: 
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where pqimageM ,  and pqimageJ ,  are, respectively, the image of the pqth magnetic and 

electric current, produced by the ground plane. And from image theory, when we assume 

the ground plane as a perfect electric conductor, and the dipole elements are parallel to 

the ground upper surface, pqpqimage MM =,  and pqpqimage JJ −=, . 
inc

pqE tan,  is the 

tangential part of incident electric field in the pqth cavity. Here, the driving source is 

assumed to be a delta-gap generator, and when the dipole collinear direction is parallel to 

y-direction and the array plane is hz = , 
inc

E 00  is taken to be 
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where ( )00,00, , cc yx  is the center coordinate of the 00th dipole element in the array plane. 

The magnetic and electric fields due to the electric currents on the dipoles and the 

equivalent magnetic currents above the apertures can be derived and expressed as [4.4] 
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where ( )rrGp ′,  is the 3-D periodic Green’s functions 
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where φθ cossinkkx = , φθ sinsinkk y = , and 222 kyqxpz −+= κκγ . Here, ( )φθ ,  

indicates the scan angle of the infinite array, and ( )0,0  denotes the broadside. The term 

( )pqMH −tan  in (4.1) can be obtained by calculating the tangential part of the magnetic 

field in a rectangular cavity, contributed by magnetic currents inside the cavity and 

expressed by: 

                            ( ) ( ) ( ) VdrMrrGjMH
V
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where HMG  is the dyadic Green’s function of magnetic (H) type produced by a magnetic 

(M) source inside the cavity [4.5]. In this problem, four components of HMG  are needed, 

i.e. xxHMG , , xyHMG , , yxHMG , , and yyHMG , . They can be expressed as 
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    The equivalent magnetic currents on the 00th aperture are expanded in the following 

basis functions [4.6]: 
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where Ti and Ui are respectively ith-order Chebyshev polynomials of the first and second 

kind, while nm
xM and nm

yM  are the unknown coefficients to be determined. 
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    Since the probe radius is small, a filamentary current approximation is made. That is, 

the field arising from J  is assumed to result from a volume current density given by 

( ) ( ) ( )hzxxyIy dy −− δδˆ                                           (4.14) 

where dx  is the axial x-coordinate of the considered dipole through which J  flows. 

However, J  itself is assumed to be of the form: 
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where 

( ) ( )22 hzxxr d −+−=                                          (4.16) 

and dr  is the dipole radius. Thus, the effect of the dipole radius is included in the analysis. 

( )yI y  is expanded in the following entire-domain basis functions: 
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where dl  is the length of each dipole element, cy  is the central y-coordinate of the 

considered dipole, and Iw are the unknown coefficients to be determined. 

    Using the Galerkin’s type solution procedure, the integral equations in (4.1) and (4.2) 

are discretized and a matrix equation for the unknown coefficients is thus obtained as 
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where Uw is wth-order Chebyshev polynomials of the second kind. If the upper cavity 

aperture plane is set to be z=0, and other geometry assumptions are according to the 
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previous descriptions, the elements of 9 sub-matrices have the following forms 

respectively: 
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and Ji is the ith-order Bessel function of the first kind. 

 

4.2.2 Results and Discussions 

1) Accuracy Validation 

    To validate the accuracy of this method, we consider an ultimate case of this type of 

antenna array. We set the depth of each concave cavity to be very small (close to zero), 

then the effects of the cavity array can be nearly neglected and the ground plane is similar 

to a purely planar one. In this case, the properties of the dipole array should be close to 

those of the traditional dipole array with a planar ground plane. 

 

    Fig. 4-2 gives the normalized resistance and normalized reactance as a function of scan 
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angle for three planes of scan. (The “D plane” is an intercardinal plane with °= 45φ .) 

The geometry parameters are a=b=0.125λ, cavity depth d=0.0001λ, periodicities Dx= Dy 

=0.5λ, dipole element length ld=0.5λ, and the array plane is 4λ  above the ground plane 

upper surface, i.e. h=0.25 λ. In Fig. 4-2, the results for the above geometry computed 

from our method are compared with those of the same dipole array 4λ  above a planar 

ground plane, computed based on sinusoidally distributed current predictions [4.1]. We 

can see that the agreement is very well. And for the value of broadside impedance, our 

result for the above geometry is 166+j34 ohms, which is close to the result given in [4.2] 

for the same thin-dipole array 4λ  above a planar ground plane.  
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Fig. 4-2 (a) Normalized radiation resistance variation with scan angle. 
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Fig. 4-2 (b) Normalized radiation reactance variation with scan angle. 
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Fig. 4-3 The electric current distribution on each dipole element in a broadside array. 
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Fig. 4-4 (a) The x-component of the magnetic current above the 00th cavity aperture in a 
broadside array. 

 

 

Fig. 4-4 (b) The y-component of the magnetic current above the 00th cavity aperture in a 
broadside array. 
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2) Electric and Equivalent Magnetic Current Distributions 

    Fig. 4-3 shows the amplitude of the electric current on a half-wavelength dipole 

element in an infinite planar broadside array 4λ  above a ground plane with periodically 

arranged 2λ -depth concave rectangular cavities. The other geometry parameters are the 

same as those in Fig. 4-2 for the solid-line results. Fig. 4-4 illustrates the equivalent 

magnetic current distribution above the 00th cavity aperture for the same array considered 

in Fig. 4-3. For the broadside array, the magnetic current distributions above all cavity 

apertures are the same. 

 

3) The Effects of Changing Some Geometry Parameters 

    Here, we illustrate some figures to show the effects of changing cavity depth and 

aperture size of the broadside infinite planar dipole array above a ground plane with 

periodically arranged concave rectangular cavities. In Fig. 4-5, the input impedance 

versus cavity depth is shown. Except the depth, other array parameters are the same as 

those in Fig. 4-3. We notice that when the backed cavities get deeper, the real part of the 

input impedance is almost constant, but the imaginary part increases gradually to a 

certain value and then remains constant. In Fig. 4-6, we illustrate the effects of aperture 

size on input impedance for a square aperture case. Except the aperture size, other array 

parameters are also the same as those in Fig. 4-3. With the aperture size increasing, the 

real and imaginary parts of the input impedance respectively increase and decrease 

slowly. 
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Fig. 4-5 Broadside input impedance varying with cavity depth.  
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Fig. 4-6 Broadside input impedance varying with square aperture side length.  
 

4.3  The Dipole Array “Embedded” in a Ground Plane with Periodically  

       Arranged Concave Rectangular Cavities 
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4.3.1 Formulation  

    The geometry of the antenna array with ground plane under consideration is shown in 

Fig. 4-7. The dipole elements are embedded in the cavities (below the upper surface of 

the ground plane). 
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Fig. 4-7 The geometry of the dipole array embedded in a ground plane with periodically 

arranged concave cavities. 
 

    The modelling procedure for this geometry is similar to that for the infinite probe-

excited cavity-backed aperture array in Chapter 3. Here, only the differences are given. 

For this problem, the basis functions to expand the dipole currents are the same as those 

in (4.17) of Section 4.2.1, the Chebyshev polynomials of the second kind and their 

associated weights. The needed cavity Green’s function components include xxHMG , , 

xyHMG , , yxHMG , , yyHMG , , xyHJG , , yyHJG , , and yyEJG , . The expressions of xxHMG , , xyHMG , , 

yxHMG , , and yyHMG ,  can be found in (3.10~3.13) in Chapter 3. The other three 

components’ expressions are given by 
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The sub-matrices ( )[ ]vvAY ′1 , ( )[ ]vvBY ′1 , ( )[ ]vvAY ′2 , and ( )[ ]vvBY ′2  have the same form as those 

in (3.26~3.29) of Chapter 3. The other sub-matrix expressions are given by 
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( ) 02 =′vvCT ,     ( )[ ] ( )[ ]TvvCvvA TT ′′ = 13 ,     ( )[ ] ( )[ ]TvvCvvB TT ′′ = 23 ,             (4.34) 
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where zd is the z-coordinate of the dipole elements (small than 0 since the in Fig. 4-7, the 

ground plane upper surface is set to be z=0). 

 

4.3.2 Results and Discussions 

1) Model Validation 

    To validate the developed numerical code, we consider an ultimate case of this array. 

We let the dipole elements very close to and “below” the cavity upper apertures. As an 

example, we set λ0001.0−=dz , and other array parameters are, a=b=0.3λ, cavity depth 

d=0.2501λ, periodicities Dx= Dy =0.75λ, dipole element length ld=0.5λ. The calculated 

input impedance of this “embedded” array at broadside is 210.36+j150.89 Ω. Then we let 

the dipole elements very close to but “above” the cavity upper apertures, and obtain the 

broadside array input impedance using the model presented in Section 4.2 by letting the 

dipole located above the cavity apertures. For example, we can set the 00th dipole element 

center at ( ) ( )0,0, 00,00, =cc yx , other dipole elements also superposing with the relevant 

cavity aperture center, λ0001.0=h , and other geometry parameters the same as the 

above “embedded” array. The calculated input impedance for this array at broadside is 

214.19+j152.78 Ω. Actually, these two arrays are quite close to each other in geometry 

since the distance between dipole elements and cavity upper apertures is very small in 
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electric length. Thus, the input impedances of these two arrays should also be close to 

each other. Our actual calculated results have shown a very good agreement, and as the 

two results are respectively obtained from two different model procedures, the agreement 

has validated the correctness of the models both in this Section and in Section 4.2.  
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Fig. 4-8 Broadside input impedance varying with cavity depth for “embedded” array.  
 

2) The Effects of Changing Some Geometry Parameters 

    Similarly, we give some figures to show the effects of changing cavity depth and 

aperture size of the broadside infinite planar dipole array “embedded” in a ground plane 

with periodically arranged concave rectangular cavities. In Fig. 4-8, the input impedance 

versus cavity depth is shown. The distance between dipole elements and cavity bottom 

surface is fixed to be 0.25λ, which means the actual varied part is the distance between 

dipole elements and cavity upper aperture surface. Other geometry parameters are, 

a=b=0.3λ, periodicities Dx= Dy =0.75λ, dipole element length ld=0.5λ. In Fig. 4-9, the 

broadside input impedance versus square cavity aperture side length (2a=2b) is 
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illustrated. The cavity depth is fixed to be 0.2501λ, and the distance between dipole 

elements and cavity bottom surface is still 0.25λ. Other geometry parameters are the same 

as those in Fig. 4-8. 
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Fig. 4-9 Broadside input impedance varying with square cavity aperture side length for 

“embedded” array.  
 

4.4  Conclusions 

    An integral equation formulation approach in spatial domain, in conjunction with 

periodic and cavity Green’s functions, has been employed in modelling infinite planar 

dipole array with a periodically excavated ground plane. Entire-domain Galerkin’s 

technique is used to solve the electric and magnetic field integral equation. A good 

agreement between the results of this approach and those available data in literature has 

been shown, and this demonstrates the applicability and accuracy of the present approach. 

The present analysis leads to a solution in the spatial domain, avoids the Fourier 

transform, and the computational time is moderate. Although this model is discussed in 

the context of excavated ground plane, it can be easily generalized to perforated ground 
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plane case by adding an integral equation enforced by the boundary condition across the 

lower apertures, similar to that in Chapter 2. 
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Chapter 5 Study on the Suspended Plate Antennas with an 

Inclined Ground Plane 

 

5.1  Problem Descriptions and Theory 

    In the design of patch antenna array, the mutual coupling between elements is an 

important factor affecting array dimensions and electric performances of the antenna 

array. Generally, when a properly matched individual element is placed in an array, its 

terminal properties related to side lobe levels, nulls, and grating lobes may change due to 

mutual coupling effects. So far, many theoretical models have been presented for 

evaluating the mutual coupling between patch antennas with a planar ground plane. The 

main existing models include full-wave analysis based on moment method [5.1, 5.2], 

cavity model [5.3, 5.4], and transmission-line model [5.5, 5.6]. However, the calculations 

based on these theoretical models are usually time-consuming although the results agree 

well with the measurement. 

 

    Suspended plate antennas (SPAs) without surface waves have been widely used in 

broadband applications [5.7, 5.8]. Sometimes they are installed on an inclined ground 

plane as illustrated in Fig. 5-1.  

 

    Here, an approximate formula for evaluating the mutual coupling between the square 

SPAs above an inclined ground plane is presented, which is based on the Newton and 

Chebyshev interpolations and simulation data. The formula is experimentally verified and 

can be used for fast estimating coupling coefficients of two SPAs. 
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Fig. 5-1 Geometry of two H plane coupled plate antennas with an inclined ground plane. 
 

    For patch antennas on a dielectric substrate, the mutual coupling between patches is 

mainly due to space wave and surface wave [5.9]. A closed form expression for the 

coupling coefficient between two H plane coupled half-wavelength rectangular patches 

on a planar substrate was given based on experimental investigations [5.10]. 

 

    In this study, we use probe-fed square SPAs to eliminate the effects of surface waves. 

To study the influences of an inclined ground plane, the square plates are chosen. The 

spacing between the plate and ground plane is fixed to be 8 mm for a broad bandwidth 

application. As illustrated in Fig. 5-1, the distance between two plates can be decomposed 

into a horizontal distance d and a vertical distance h. The decomposition is based on 

different contributions of d and h to the mutual coupling. In our investigation, the bent 

angle of the ground plane θ  is found to be a minor factor to affect mutual coupling as 

compared with d and h. The mutual coupling between the SPAs is mainly due to the 

space wave coupling. The inclined ground plane actually forms a wedge, which scatters 
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the waves radiated by the two SPAs. Consequently, although the two SPAs cannot “see” 

each other when the bent angle θ  and the SPA location are chosen to be some certain 

values, their coupling function is still continuous. Thus, we can use interpolation to get 

the approximate formula for the mutual coupling between the SPAs. Based on space 

relationship, the coupling coefficient for the case shown in Fig. 1 is given by  







+






=

λλ
hHdDS 22

21                                        (5.1) 

If we choose λ  as the unit of d and h, (1) can be simplified as 

                                               ( ) ( )hHdDS 22
21 +=                                          (5.2) 

Here, the functions, D and H, respectively, stand for the contributions of d and h to the 

mutual coupling between the two SPAs. 

 

Fig. 5-2 A set of typical plots for S parameters of antennas with an inclined ground plane: 
measured results and IE3D simulated results.  

 



 85

 
Fig. 5-3 (a) Coupling coefficient as a function of horizontal distance for H plane coupled 

square plates with an inclined ground plane: GHz9.1=rf , 70mm== ba , λ5.0=h , 
and o90=θ .  

 

  

Fig. 5-3 (b) Coupling coefficient as a function of vertical distance for H plane coupled 
square plates with an inclined ground plane: GHz 9.1=rf , mm 70== ba , λ2.0=d , 

and o90=θ . 
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Fig. 5-4 (a) Coupling coefficient as a function of horizontal distance for E plane coupled 

square plates with an inclined ground plane: GHz 9.1=rf , mm 70== ba , λ5.0=h , 
and o90=θ .  

 

 
Fig. 5-4 (b) Coupling coefficient as a function of vertical distance for E plane coupled 
square plates with an inclined ground plane: GHz 9.1=rf , mm 70== ba , λ2.0=d , 

and o90=θ . 
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5.2  Results and Discussions 

    A thorough investigation has been made on the mutual coupling between the square 

SPAs fed by an 8-mm long probe. One of the typical plots for S parameters of antennas 

with an inclined ground plane is shown in Fig. 5-2. It can be seen that the IE3D simulated 

results agree well with the measured ones. Therefore, we can use the simulated results as 

a reference in subsequent discussions.  

 

    Herein, Newton interpolation and Chebyshev interpolation are used to get the 

expressions of D(d) and H(h) in (5.2). The descriptions of the Newton and Chebyshev 

interpolations as well as their error estimates are given in Appendix. The evaluated 

results are given as follows: 

(i) for two H plane coupled plates: 

( )
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(ii) for two E plane coupled plates: 

        
( )
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        ( )
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Based on the formulae in (5.2)~(5.6), we can obtain some typical plots for coupling 

coefficient |S21| varying with d and h when the others are fixed. Shown in Fig. 5-3 is the 

coupling coefficient for H plane coupled plates with an inclined ground plane, and 
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depicted in Fig. 5-4 is that for E plane coupled plates. The simulated results are also 

shown in Figs. 5-3 and 5-4 for comparison. The agreement is fairly good as 

demonstrated. In Figs. 5-3 and 5-4, the plots for the relative errors between evaluated 

results and simulated results are also given. It can be seen that the maximum relative 

errors are respectively 5.4%, 3.0%, 13.9% and 3.1% for Figs. 5-3 (a), 5-3 (b), 5-4 (a) and 

5-4 (b). Through our investigation, it is found that the maximum error occurs when the 

bent angle of the ground plane θ  is around 45°, as displayed in Fig. 5-5 for the H plane 

configuration. This is because in our approximate formula, the distance is decomposed 

into horizontal and vertical components as independent variables. From error synthesis, 

the maximum error occurs when contributions of all the components can match each 

other. When θ =45°, the bent part of the ground plane is decomposed into two equal 

horizontal and vertical components. As seen in Fig. 5-1, the distance s is much smaller 

than the length of bent part of ground plane, which makes the latter to be the major factor 

affecting the mutual coupling. So, the maximum error occurs when θ  is around 45°. 

 

    Another factor to affect the mutual coupling is the size of the ground plane. Generally, 

the mutual coupling between the two plates with a smaller ground plane is stronger than 

that with a larger ground plane when all the other factors remain the same. This 

observation is confirmed in our investigations. There are two ways to change the size of 

the ground plane. One is to change the dimensions of the ground plane directly, while the 

other is to vary the sizes of the plates, which results in different resonant frequencies and 

different “relative” sizes of the ground plane. In our investigations, a finite-size ground 

plane at a resonant frequency around 1.9 GHz is considered. So, this idea can be directly 
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used in the practical design of SPAs with the inclined ground plane of similar relative 

size. If the ground plane size changes considerably, the coefficients of polynomials ( )dD  

and ( )hH  in (5.3~5.6) should be modified by the interpolation with new simulation 

results. As indicated earlier, the procedure of Newton and Chebyshev interpolation is 

included in the Appendix.  

 

Fig. 5-5 Coupling coefficient as a function of ground plane bent angle for H plane 
coupled square plates with an inclined ground plane: GHz 9.1=rf , mm 70== ba , 

λ51.022 =+ hd , and λ05.0=s . 
 

5.3  Conclusions 

    In this chapter, a study on the mutual coupling between two square SPAs with an 

inclined ground plane has been presented. The interpolation formulae have been obtained 

and used to evaluate the coupling coefficients for E and H plane coupled square plates. 

 

5.4  Appendix 

In this appendix, a brief description of Newton interpolation and Chebyshev interpolation 
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is given. 

5.4.1 Newton’s Divided Difference Interpolation [5.11] 

ALGORITHM INTERPOL ( xffxx nn ;,,;,, 00 LL ) 

This algorithm computes an approximation ( )xpn  of ( )xf  at x. 

     INPUT: Data ( ) ( ) ( )nn fxfxfx ,,,,,, 1100 L ; x 

      OUTPUT: Approximation ( )xpn  of ( )xf . 

      Set ( )njfxf jj ,,0][ L== . 

      For 1,,1 −= nm L  do: 

             For mnj −= ,,0 L  do: 

                     [ ] [ ] [ ]
jmj

mjjmjj
mjj xx

xxfxxf
xxf

−

−
=

+

−+++
+

11 ,,,,
,,

LL
L  

             End 

      End 

      Set ( ) 00 fxp =  

      For nk ,,1L=  do: 

             ( ) ( ) ( ) ( ) [ ]kkkk xxfxxxxxpxp ,,0101 LL −− −−+=  

      End 

      OUTPUT ( )xpn  

      End INTERPOL 

For equal-spacing Newton Interpolation, we have rhxx =− 0 , ( )hrxx 11 −=− , etc. 

The error is given by  
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5.4.2 Chebyshev Interpolation 

      This algorithm computes an approximation ( )xpn  of ( )xf  within [ ]ba, . 

i) The first procedure is to compute the zero points of 
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where ( )xTn   is a Chebyshev Polynomial of order n. 

ii) And the second step is to employ ( )kk fx ,  in ( )2.A  as given data to get 

interpolation polynomial ( )xpn .  

The error estimate for Chebyshev Interpolation is given by 
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Chapter 6 Conclusions and Recommendations 

 

6.1 Conclusions of the Thesis 

    In this thesis, an integral-equation-formulation approach, in conjunction with method 

of moments (MoM), has been employed in modelling three periodic structures and 

analyzing their scattering or radiation properties. Integral equations enforced by boundary 

conditions have been derived in the spatial domain, expressed in terms of the electric 

fields developed on the conducting surfaces and the magnetic fields developed across the 

apertures, respectively. These fields were calculated using periodic and cavity Green’s 

functions, and the needed components were derived and given in the relevant chapters. 

The integral equations were solved via the MoM technique. In particular, an entire-

domain Galerkin’s technique was employed and proved very efficient, when rather 

specific geometries were considered and appropriate “intelligent” basis functions were 

chosen, accelerating the convergence of the method. To prove this claim, three useful 

periodic structures, a thick perforated plate, an infinite probe-excited cavity-backed 

aperture array, and an infinite planar dipole array with a periodically excavated ground 

plane, have been solved in the above approach. 

 

    As far as the thick perforated plate case is concerned, the scattering from a periodically 

perforated conducting plate has been examined in Chapter 2. PEC cavities were 

employed to model the perforated regions, and entire-domain Galerkin’s technique was 

used to discretize the field integral equations for the equivalent magnetic currents 

representing a doubly periodic rectangular aperture array, where the basis and testing 
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functions were Chebyshev polynomials and their associated weights. The use of 

Chebyshev-type basis functions in describing the unknown electric and equivalent 

magnetic currents, proved very effective, was definitely preferable to the use of Fourier-

exponential basis functions. The calculated results were compared with experimental data 

and the numerical data from previous accurate methods. To study the effects of geometry 

parameters on the scattering properties, transmission coefficient versus differing screen 

thickness, aperture dimensions, and incident waves were shown and discussed. The 

scattering from a periodically perforated conducting plate has many significant practical 

applications. A thick perforated plate has exhibited a steeper cutoff between the stop and 

the passband frequency, which is important in the design of metallic mesh filters or 

fenestrated radomes. The thick screen can also be used in the problems associated with 

the radiation hazards due to leakage through reflective surfaces on low-noise antennas. 

 

    Cavity-backed aperture or slot array was noticed to have many attractive features, such 

as low profile and high efficiency, but in literatures it has not been found any full wave 

method to model this kind of infinite array accurately and completely. Given this 

consideration, in Chapter 3, an entire-domain Galerkin’s procedure was presented for the 

accurate and efficient modelling of infinite probe-excited and cavity-backed aperture 

array, based on the spatial domain cavity Green’s function and periodic Green’s function. 

Entire-domain Galerkin’s expansions have been employed together with several algebraic 

manipulations in computing the integrals involved, which helped us get the analytical 

results of the matrix form, avoided the Fourier transformation in spectral-domain 

methods, and had a positive effect on the accuracy of the proposed technique. The effects 
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of cavity depth, aperture size, and periodicity for the infinite probe-excited cavity-backed 

aperture array were also discussed and given out. 

 

    As another representative example of the radiation problems of periodic structures 

combining cavity and array properties, the infinite planar dipole array with a periodically 

excavated ground plane has been modelled in Chapter 4. Two cases were treated 

separately for this kind of array, due to the different modelling procedures and field 

calculation methods. One case is the dipole array above a ground plane with periodically 

arranged concave rectangular cavities, and the other case is the dipole array “embedded” 

in a ground plane with periodically arranged concave rectangular cavities. To verify the 

proposed approach, the radiation impedance results have been compared with those data 

available in literatures for some ultimate geometry cases, and a good agreement was 

found. The proposed model can be easily generalized to the perforated ground plane case 

by adding an integral equation representing the boundary condition across the lower 

apertures, as that in Chapter 2. 

 

    In Chapter 1, some basic theories and popular acceleration methods of periodic and 

cavity Green’s functions have been introduced. The periodic Green’s function is from the 

three-dimensional Maxwell’s equations defined on a doubly periodic domain with 

interfaces between two media with differing dielectric constants. A direct form of 

periodic Green’s function was obtained from the superposition of fundamental solutions 

to the Helmholtz equation modified by an appropriate phase factor which considered the 

pseudo-periodic boundary conditions. With help of Poisson summation formula, the 
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direct form of periodic Green’s function was transferred to a form converging fast and 

convenient for the analytical integration and differentiation. Several other popular 

acceleration methods for periodic Green’s functions, including Kummer’s transformation, 

Shanks’ transformation, and Ewald’s method, were briefly introduced respectively. As 

for the cavity Green’s function, a dyadic form based on modal expansion was given out, 

from which any components useful in certain problems can be derived. The advantage of 

this type of cavity Green’s function is easy for analytical integral and differential 

calculations, which is preferably needed for entire-domain Galerkin’s method. Another 

type of cavity Green’s function based on image expansion and its acceleration method 

were also described briefly. 

 

    The modelling method combining periodic and cavity Green’s functions and entire-

domain Galerkin’s technique was conducted in the spatial domain instead of the spectral 

domain in most existing literatures, and thus leads to a solution in the spatial domain, 

avoids the Fourier and inverse Fourier transformations of spectral domain methods. The 

“intelligent” entire-domain basis functions were chosen suitable for mathematical 

manipulations to obtain analytical results of the matrix elements when performing the 

Galerkin’s procedure. The computational time is moderate as compared with the existing 

full wave solutions which are relatively time consuming.        

 

    In Chapter 5, a study has been performed on the mutual coupling properties of two 

suspended plate antennas (SPAs) with an inclined ground plane. Suspended plate 

antennas without surface waves have been widely applied in broadband applications, and 
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sometimes they are installed on an inclined ground plane. The full-wave theoretical 

computations are often time-consuming, so an asymptotic formula was developed to 

approximately evaluate the mutual coupling between the square SPAs with an inclined 

ground plane. Newton and Chebyshev interpolations were combined with simulation data 

from commercial EM computation software to determine the polynomial coefficients. 

Several SPAs with inclined ground plane and planar plane were manufactured and the 

experiments were set up for studying their properties and verifying the calculated results 

by simulation and the proposed approximate formulae. 

 

6.2 Recommendations for Future Research 

    Future study in the EM modelling for periodic structures combining periodic Green’s 

function and cavity Green’s function can be done in the following three major directions: 

1) Further accelerating the convergence of both periodic Green’s function and cavity 

Green’s function using Ewald’s method or other mathematical transformations. Ewald’s 

method has been proved to be able to accelerate both 2D periodic Green’s function and 

cavity Green’s function and get the exponential convergence [6.1] – [6.2]. So far, most of 

the existing literatures have just shown the procedures to use this method in some basic 

forms of periodic and cavity Green’s function calculations, but no literature has been 

found to apply it in a structure combining these two kinds of Green’s functions, such as 

the infinite thick periodically perforated PEC plate, the probe-excited cavity-backed 

aperture array, and the infinite planar dipole array with a periodically excavated ground 

plane, and so on.  
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2) Applying the modelling approach to more different kinds of periodic structures in 

various scattering and radiation problems. For example, a microstrip patch array with 

each element residing in a cavity has been reported to have an attractive advantage to use 

thicker substrates without the limitation in the scanning range [6.3]. To analyze this 

structure, simple approaches become inefficient and full-wave analyses are required. The 

method presented in this thesis can be modified to model such an important array. On the 

other hand, the rectangular cavities used in the above structures can be replaced by 

cylindrical ones, and a procedure similar to what has been presented in this thesis can be 

employed to model these new structures. Here, a different form of basis functions should 

be considered to achieve the closed-form results. 

3) Coupling between two antennas/elements in a geometry background similar to what 

has been discussed in this thesis. For example, suppose we have an infinite ground plane 

with double periodically excavated cavities, the coupling between one antenna inside a 

cavity and another antenna above the ground plane can be computed accurately based on 

the model presented in the previous chapters.  
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