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Summary

In this thesis, a full wave integral equation method is used to analyze three useful
periodic structures and analyze their scattering and radiation properties, combining with
periodic and cavity Green’s functions. An entire-domain Galerkin’s technique is
employed to discretize the integral equations of boundary conditions. For the equivalent
magnetic currents representing a doubly periodic array of rectangular apertures, the basis
and testing functions are chosen to be Chebyshev polynomials and their associated
weights. The components of Green’s functions, used in calculating the electric and

magnetic fields for periodic array and in cavity, are derived and given out.

In Chapter 1, the basic theory and several useful acceleration approaches for periodic
and cavity Green’s functions are introduced briefly. In Chapter 2, a thick periodically
perforated plate is modelled using the above approach, and the calculated results from the
proposed model are compared with the experimental and numerical data in previous
literatures. The effects of the plate thickness, aperture dimensions, and incident wave on
the scattering properties are discussed. In Chapter 3, a probe-excited cavity-backed
aperture array is modelled with the proposed method. The effects of cavity depth,
aperture size, and periodicity for the radiation properties of such a array are analyzed and
illustrated. In Chapter 4, infinite planar dipole array with a periodically excavated ground
plane are modelled for two cases. One case is the dipole array above a ground plane with
periodically arranged concave rectangular cavities, and the other case is the dipole array

“embedded” in a ground plane with periodically arranged concave rectangular cavities.

v



The radiation impedance results are compared with those available data in literature for
some ultimate cases, and a good agreement is observed. In Chapter 5, a study is
performed on the mutual coupling properties of two suspended plate antennas (SPAs)
with an inclined ground plane. An approximate formula for evaluating the mutual
coupling between the square SPAs with an inclined ground plane is presented and

verified. And in Chapter 6, the conclusions for this thesis are given.
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Chapter 1 Introduction

1.1 Background and Previous Work

Periodic Green’s functions have been of interest for many years, since they are useful
for the analysis of well-known application like frequency selective surfaces (FSS) and
array antennas [1.1, 1.2]. With the appearance of new periodic materials and structures
like Electromagnetic Band Gap structures and Left-hand materials, the need for an
accurate and efficient method of computing these Green’s functions becomes more

important.

A frequency selective surface can be viewed as a filter for plane waves at any angles
of incidence. It is usually designed to reflect or transmit electromagnetic waves with
frequency discrimination. It has been widely used in radar systems, broadband
communications and antenna technology. More recently, it also invokes research interests
in novel applications of general -electromagnetic periodic structures such as

photonic/electromagnetic band gap structures and double negative metamaterials, etc.

On the other hand, cavity Green’s function has been investigated as another type of
important Green’s function [1.3-1.5], due to its applications in various microwave
structures involving cavities. In recent years, to accelerate the convergence of cavity
Green’s functions used in the analysis of shielded structures, like the electromagnetic
compatibility (EMC)/electromagnetic interference (EMI) studies including wire antennas

and septa inside cavities, some new calculation schemes have been proposed [1.6, 1.7].



1.2 Motivation and Scope of this thesis

The combination of periodic Green’s function and cavity Green’s function has been
found in the solutions for FSS scattering problem [1.8], and the combination of free space
Green’s function and cavity Green’s function has been found in solutions to the radiation
of a single aperture or slot backed by a cavity [1.9]. Actually, the combination of periodic
Green’s function and cavity Green’s function can also be used in solutions to the
radiation of periodic array backed by cavities. And in many practical applications, the
solutions to cavity-backed array problems are needed. However, the theoretical study in

this area is seldom found in previous literatures.

This thesis presents a full wave integral equation model in spatial domain to rigorously
solve three useful periodic structures and analyze their scattering and radiation properties,
combining with periodic and cavity Green’s functions. An entire-domain Galerkin’s
technique is employed and appropriate basis functions are chosen to obtain a close form

solution, accelerating the convergence.

1.3 Introduction of Periodic Green’s Functions

1.3.1 Formulation of Periodic Green’s Functions

Huge computing resources are required in the analyses of many three-dimensional EM
problems. One way to go through is to consider periodic structures in order to reduce the
investigation domain in one cell of the structure. The three-dimensional Maxwell’s
equations defined on a doubly periodic domain with interfaces between media of

differing dielectric constants is a very important application of Maxwell’s equations, and



it is also the basis of the derivation of this thesis. In the absence of charges or currents

and in the case of time-harmonic electromagnetic wave, the electric field vector E

defined in a medium in Maxwell’s equations satisfies the Helmholtz equation of the form

V’E+e E=0, (1.1)
subject to pseudo-periodic boundary conditions and interface conditions between
adjacent media. Here, ¢ is the complex dielectric constant and ky is the free space wave
number. We obtain a system of Helmholtz equations which are coupled through the

interface conditions.

This coupled system of Helmholtz equations can be reformulated using the vector form
of the Helmholtz-Kirchoff integral theorem in terms of a coupled system of boundary
integral equations [1.10]. Of course, the boundary integral method assumes that one can
obtain a suitable Green’s function for the problem. For our case, following the
development by Morse and Feshbach [1.11], it is a straightforward task to derive the

Green’s function with the following form

Gp (;’?):L Z Z eR & ejkxpr+./ky¢IDy , (1.2)

7 p=—wg=o Lpg
where
ke =ksin@cos¢, k,=ksinfOsing, (1.3)
and
qu:\/(X—X'—pr)2+(y—y'—qDy)2+(z—z')2 _ (1.4)

The angles @ and ¢ are the polar and azimuthal angles, respectively, of the incident

plane wave; D, and D, are the periodic distances in the x and y directions, respectively;



k= \/;ko. We note that equation (1.2) in essence is the superposition of fundamental

solutions to the Helmholtz equation (1.1) modified by an appropriate phase factor which

takes into account the pseudo-periodic boundary conditions.

Obviously, the form of formula (1.2) is unsuitable for carrying out the numerical
calculations directly in most cases and converges very slow. Here, the Poisson
summation formula [1.12] is employed to transfer (1.2) to another form easy for the

practical numerical calculations. The Poisson summation formula is defined as

0 1 0

> flap)=— Y Fm/a). (1.5)
p=—© a p=—0©
where function F is the Fourier transform of function f. This formula can sometimes be

used to convert a slowly converging series into a rapidly converging one by allowing the

series to be summed in the Fourier transform domain.

To obtain the needed form of doubly periodic Green’s function, the following steps can
be taken [1.13]. Firstly, the Poisson summation formula is applied to the x coordinate of

the three-dimensional Green’s function in (1.2) yielding

—JkRpq .
ejkxpr+Jkquy

o0 o0 2
:27le 2 2K \/[21)_@+kx] ke (-0




where K (x) 1s modified second kind Bessel function of the zeroth order. Then, an

expression equivalent to a two-dimensional Green’s function can be recovered by

manipulation of the above expression giving

X p=—00 g=—©

L

X

; (1.7)

_ 2mpx
'\/()’_J/'—CIDy)2 Jr(Z—Z')2 )e "o,

where H (() )(x) is Hankel function of the second kind, zeroth order. Finally, applying the

Poisson summation formula again, but this time to the y coordinate of (1.7), gives the

following Poisson summation transformation form of (1.2):

- e
GP(V,V) 2D Dy pZ_:qu_:oo 2 2
2 k| o+ 27Tq+k —k*
D, D

y
]'[ZD—’?:JrkV j(x x') J[sz*'ky j(y—y')

e

e

Jpr (x_x’)ej’(yq (}’—y')e—J’z‘Z—Z,‘

ZZ

P 2D,D,y.

Kxp= 27Zp/Dx kx
Kyg= 27rq/Dy k,

_ 2 2 2 2 2 . . . .
where y. =,/x,, +x, —k° , when x +x, <k, y. is an imaginary number, with

7./J as a positive number, and when Kfp + Kyzq > k’, y. is a positive real number

Thus, a useful form of doubly periodic Green’s function has been obtained, which is

convenient for numerical computation. It can be seen that formula (1.8) avoids the



singularity problem appearing in formula (1.2), and the analytical integration and
differentiation are also much simpler for the formula (1.8). This periodic Green’s
function can be applied in many EM problems, such as FSS and a large array of antenna
elements. It will be used in Chapter 2~4 for the EM modelling of various periodic

structures.

1.3.2 Acceleration Methods of Periodic Green’s Functions
Besides the Poisson transformation given above, some other acceleration methods can
be applied in efficient calculation of the periodic Green’s function, such as Kummer’s

transformation, Shanks’ transformation, and Ewald’s method. They are outlined below.

1) Kummer’s Transformation

The first acceleration method introduced here is Kummer’s transformation [1.14].
Since double sums may be evaluated by repeating evaluation of single sums as the
process from (1.6) to (1.8), one can illustrate the idea by applying it to a single sum of the

form

S= if(n). (1.9)

The convergence of the series is governed by the asymptotic form of f(n) as n — .
Suppose that f(n) is asymptotic to a function f;(n):
fln)—=2 £i(n). (1.10)

If f1(n) is defined for all integers n, then Kummer’s transformation gives

[>e} 0

> rln)=>lr (n)—ﬁ(n)]+§wﬁ(n)- (1.11)

n=—000 n=—00



Generally, f; is chosen such that the last series in (1.11) has a known closed-form sum. It
is sufficient, however, merely to transform to it into a highly convergent series. With the
appropriate choice of fi, the slowly converging series on the left-hand side of (1.11) is

transformed into the sum of two highly convergent series on the right hand side.

A limitation of Kummer’s transformation is that the extension of Kummer’s
transformation to the series solutions for lossy conductors, somewhat surprisingly proves

to be less useful than its application to those for perfectly conducting media [1.15].

2) Shanks’ Transformation
Shanks’ transformation [1.16] is based on the assumption that a sequence of partial

sums S, (n=1, 2, --*) can be thought of as representing a “mathematical transient” of the

form
K
S, =S+ aq; . (1.12)
k=1
If ‘qk‘ <1, then clearly
S=1lmS§S,. (1.13)

The assumed form (1.13) implies that the sequence of partial sums satisfies a (K+1)th
order finite difference equation. It is shown in [1.16] that the repeated application of the
transform extracts the base S (i.e., the constant solution of the finite difference equation)
of the mathematical transient. These higher order Shanks’ transforms are efficiently
computed by means of the following algorithm [1.17]:

1

€511 (Sn ) = €51 (Sn+l )+ €y (Sn+l )_ €s (Sn )’

s=1,2,, (1.14)



where

1
€o (Sn+1)—€o (Sn )

eO(Sn):Sns el(Sn): (115)

Only the even-order terms e;, (Sn) are Shanks’ transforms of order » approximating S;

the odd-order terms are merely intermediate quantities. To apply the Shanks’ transform to
the summation of a double series, one can apply it successively to the inner and outer

sums.

The above algorithm has the drawback that it may suffer from the cancellation errors
(which used to happen when the method was applied to a one-dimensional sequence
derived from the two-dimensional sequence). In that case, problem can be avoided using
the progressive rules of the algorithm [1.18]. Another limitation of Shanks’ transform is
that it has been observed previously to be sensitive to round-off error sometimes [1.19].

To avoid this, a suitable range of convergence factors should be used.

3) Ewald’s method
Jordan et al. presented a transformation of the three dimensional periodic Green’s
function into two exponentially converging summations [1.20]. Their development
employed mathematical identities developed by Ewald [1.21]. The 3-D periodic Green’s
function given by (1.2) can be written in two parts as
G, ()= Gilr 7 )+ Galr7), (1.16)

where



2

G (r r) i i i o /kepDx+jkyaDy \/_J' R’ e ds, (1.17)
T

p=—wq=
and
qus +k
(r r) . Z z JhxpDx+ JkyqDy \/_J‘ 45> ds, (1.18)
p=—0g=

with &, k,, and R, as in equation (1.2). E is an arbitrarily chosen parameter that splits the
computational burden between (1.17) and (1.18). The larger the value of E, the more

weight (1.17) carries. From Ewald’s method, one can write the integral in (1.18) as

2 Bhust+ L 1 k
o TRpgS ; ]
—j e 457 gy = —| ™ P erfe R, E + 5
JrE Ry, 2E
, (1.19)
+e M erfe R, E— k.
2F
where erfc(x) is the complementary error function defined as
erfc e du. (1.20)

From [1.20], equation (1.17) can be rewritten as

. _) B o/ e (e Yy (-7)] 0 oo iz(Z‘Z')erfc(oz pq|E T (z - Z')E )

., 2 X >

p=—00 gq=—00 *

Dy Dy

“ra , (1.21)

j2r
e

where

2 2
g =| P2 | 5 | BT e 4| (k2+k2 k ) (1.22)
D, D, D, D,

and Z is the summation of the positive and the negative arguments. Equations (1.17),
+

(1.19) and (1.21) make the 3-D periodic Green’s function converge rapidly. This is a



when x = o« for

consequence of the fact that erfc(x) behaves asymptotically as ¢

Jrx

‘arg(x] <3r/4.

1.4 Cavity Green’s Functions
1.4.1 Formulation of Cavity Green’s Functions

The electromagnetic radiation fields, Eand H ina rectangular cavity, contributed by
the electric and equivalent magnetic current distributions J and M located in the

rectangular cavity may be expressed in terms of the integrals of the electric and magnetic

dyadic Green’s functions [1.5]

Ele)=—jouf][ ,Ges () T Wv =[], Gone ')} (. (123)

H)=[[[ Guwlrr)}- T v = jos[[[ G )} M(hv,  (124)
where ¢ and u stand for the permittivity and permeability of the medium, respectively; V"

identifies the volume occupied by the sources; G and Gy are the dyadic Green’s

function of electric (£) type produced respectively by an electric (J) and a magnetic (M)

source inside the cavity, while Guw and Gy are the dyadic Green’s function of
magnetic (H) type produced respectively by an electric (J) and a magnetic (M) source

jor

inside the cavity. A time dependence e’” is suppressed throughout. From [1.5], the

expressions of the four dyadic cavity Green’s functions are given by

10



0 m=0 7kc
+mmwwm$w];iigéwwmw

aé‘;[nnM’emn (7)"" ﬂe[\r/rlm ' emn (_ 7)]"‘ Nomn I:Clel\,{m ﬁomn (7) (125)
+ BN o (- )/)]+ M emn (- y)[aéﬁfn M o (y)+ Bt M e (- )/)]
+ N omn (— 7)aem,, N’omn( )+ L, N’ omn (— 7) z2z',zy <z,z' <zp+t

oy Wl )] fiiQ%@me

[af‘,{,z\? (7)+ B, M o~ y)]+ Ny [aﬁi,mﬁm () (1.26)
+ /Bo]\r[nnﬁemn (_ 7) + M omn (_ 7)6%%1 M omn (7)+ B M’ omn (_ 7)
+ N emn (— 7)agn]\1'nﬁemn (7)+ ﬂén]\{nﬁemn (— 7) 222, zp < 2,2 <zp +t

EEM (I_’, 17)= V x EHM (I_’, 7), EHJ (I_”,?)= V x EEJ (;,7), (1.27)

where the rectangular vector wave functions M,M', N and N are given in the 1%

edition of Tai’s book [1.22], &y (=1 for m or n=0, and O otherwise) denotes the

Kronecker delta, y* =k* —kZ = k* —(m7z/a)2 —(niz/b)2 , k= a)\/,ug(l—ja/a)g) is the

wave number in the medium, o is the conductivity of the medium, and the coefficients are
given below

17 zb +t) -jn

‘M\N _ €
(+)(+ )W sinlr ag =25l (1.28a)
e*j;’t e” Zb+t

M,N _ /M N
pit Eym = (F)+- )m (1.28b)

and the upper-lower and left-right notation of (1)(+ —) is designated for the subscript and

superscript ( )(M N ) Here, a, b, and ¢ are, respectively, the length, width and

11



thickness of the considered cavity. As for the coordinate setting, one bottom corner point
1s located at (0,0, zb). From the above expressions of dyadic Green’s functions, we can

derive any components needed in a specific problem, as done in the following chapters.

1.4.2 Different Expressions of Cavity Green’s Functions
The above electric and magnetic cavity Green’s functions can all be derived from
vector potential Green’s functions for the rectangular cavity, which are given by the

following form [1.22]:

Ga = RRG gy + PPGapy + 22G ez, (1.29)
Gr = #Gru + 99Gry + 3G, (1.30)

where the subscript 4 and F designates the magnetic and the electric vector potential,
respectively. Each component of the dyadic Green’s functions can be expressed in two
forms [1.6]. One is the spectral representation in terms of modal functions of the cavity,
and the other is the spatial expansion in terms of images produced by the cavity walls.

Without universality, only the G 4, component will be presented here for brevity.

1) Modal Expansion of the Potential Cavity Green’s Function

L EpEnE "L
GAxx = L Z P COS[mijOS(mm jSIH(nZyJ

2
abt m,n, p=0 amnp a a

sin nry sin pe sin P
b t t
I, i=0

2 2 2
where ¢; = , and a,%,,,p I (R T L R D
2, i#0 a b t

(1.31)
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2) Image Expansion of the Potential Cavity Green’s Function

0 —JkR; ,mnp

,
GAM::jﬁ- IR I fi— (1.32)

m,n, p=—0 i=0 Ri,mnp

1, i=03,47
where Af‘:{+ TR Rimp =+(X; +2mal + (v +2nbf + (2, +2ptf
-1, i=1256

x—x",i=0,12,3 y—=y,i=0,145 z—2',i=0,2,4,6
X = Y; ,and Z; =

x+x,i=4567 y+y,i=236,7 z+2,i=1357

1.4.3 Acceleration Method of Cavity Green’s Functions
From [1.11], the image expansion of the cavity Green’s function can be divided into

the following two series according to the identity derived by Ewald [1.20] [1.21]:

GAxx = GAxxl + GAxe ) (1333)
U 0 7 2 E —R,%,npsz+f—22
Gl = — A" —| e " ds 1.33b
e, 2 Z T (133
2
0 7 —R2 s2+k—
" I =
Gpor = — AT —| e A7 ds 1.33¢
i, 2 X (1359

where E is an adjustable parameter in the Ewald’s method. The G, and G 4., can be

converted into the following closed-form:

2

X EmEnE - !
2 minx min
G = A z ” 2” Po 4E cos(—jcos( j

abt 5 p=0 Comnp a

sin nay sin ny sin P sin pe
b b t t

, (1.34)
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o — JkR: .
G =ﬁ z iAixx Re|e J Perfc(R,-’man ]k/2E)|, (1.330)

m,n, p=—o0 i=0 Ri,mnp

where Re[A] designates the real part of a complex number 4. Clearly, the G4, series is

exponentially convergent, and the G 4, series is also very rapidly convergent due to the

presence of the complementary error function as described in previous Section 1.3.2.
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Chapter 2 Modelling of a Thick Perforated Plate Using Periodic

and Cavity Green’s Functions

2.1 Introduction

A periodically perforated perfectly electrically conducting (PP-PEC) plate has been
widely used in many applications, such as microwave filters, bandpass radomes, artificial
dielectric, antenna reflectors, and ground planes [1]. In these applications, it is essential
to accurately predict the transmission and reflection properties of this structure. Although
thin perforated sheets are satisfactory for most applications, thick perforated plates are
preferred in many cases to enhance the strength and hardness of the structure, to improve
the bandpass filter characteristics, or to avoid radiation hazards due to leakage from
microwave sources [2.1]. A thick perforated plate exhibits a steeper cutoff between the
stop and the passband frequency, which is significant in the design of metallic mesh
filters or fenestrated radomes. The thick screen also finds practical applications in
problems associated with the radiation hazards due to leakage through reflective surfaces

on low-noise antennas.

So far, the electromagnetic wave scattering by the thin PP-PEC sheets has been
extensively investigated both theoretically and experimentally. In the early theoretical
models, Kieburtz and Ishimaru used a variational approach [2.2], Chen and Lee
represented the apertures in the metal as an infinite 2-D array of waveguides [2.3-2.5].

Later, many other researchers contributed to modelling this structure using the method of
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moments [2.6-2.9]. All the above numerical models considered the thickness of the
perforated screen to be zero. In some applications, a thick screen is desired, such as solar
power filters [2.10], because it has a sharper stopband cutoff than does a thin screen. This
structure was first studied by Chen [2.1] and later by McPhedran and Maystre using
modal formula [2.10]. Based on spectral Green’s functions and spectral equivalent
surface current, Chan presented a mixed spectral-domain approach to analyze frequency
selective surfaces (FSS) with various apertures including the effects of dielectric loading

[2.11].

Here, a theoretical method based on periodic and cavity Green’s functions is presented
to model the thick infinite periodically perforated perfectly electrically conducting (TIPP-
PEC) plate, which has been shown its validity when the plate material has a high
conductivity. The PEC cavities are employed to model the perforated regions, while
Galerkin’s method of moments procedure is used to discretize the field integral equations
for the equivalent magnetic currents representing a double-periodic array of rectangular
apertures, where the basis and testing functions are Chebyshev polynomials and their
associated weights. This method is straightforward and simple without use of Fourier
transform and its computation time is moderate. The calculated results will be illustrated
and compared with experimental data and the numerical data from previous accurate
method. The effects of the screen thickness, aperture dimensions, and incident wave on

the scattering properties will also be discussed.
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2.2 Formulation

Considering the geometry depicted in Fig. 2-1, the apertures periodically perforated on
a PEC plate of thickness ¢ are rectangles of dimensions 2ax2b. The origin of the
coordinate system lies in the center of the 00th lower aperture. The entire structure
exhibits periodicity D, in the x-direction and D in the y-direction. The incident plane
wave is illuminated upon the PEC plate at an angle & off the z-direction and an angle ¢
off the x-direction. In this case, an aperture on the PEC plate is equivalent to two
magnetic currents M and M', which reside respectively at an infinitesimal distance
above and below the aperture. And, the equivalence theorem allows M'=—M . Hence,
the equivalent magnetic currents M (=M ix +¥M,,) and M2 (=iM 2 tIM,),) at the
pqth upper and lower outer interfaces of the rectangular holes are found by enforcing the

continuity of magnetic field across the apertures

Across the pgth upper aperture (z =1¢):

s +ﬁi;n[2z\_41,qu W Vo - W) e

p-q

Across the pgth lower aperture (z =0):

E{can (— Mz,pq )+ ﬁ{can (— A_41,pq ) = Eian [ZMZ,PQ J (22)

P.q

where H un is the tangential components of the incident wave. The superscripts u and /

denote the fields at upper and lower interfaces in Fig. 2-1.
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D s2 (Dx)

Fig. 2-1 A thick periodically perforated conducting plane.

/i

Fig. 2-2 Equivalent magnetic currents at the upper and lower apertures of a perforated
region.

The magnetic field due to the equivalent magnetic currents above the upper apertures

and below the lower apertures can be derived as following

H Y Mipy |=———V[v - Fi)- joF: 23)
£P p qu wus )

Fi=Z [ Ml b lis (2.4)
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where M (7) is the equivalent magnetic current above the pgth upper aperture (i=1)
and below the pgth lower aperture (i=2), as shown in Fig. 2-2. When the screen is
illuminated by plane waves, the relationship between the magnetic currents is

M ipg = Moo PP o/ *vily (2.5)
where k, = ksinfcosg, k, =ksinfsing, k is the wave number, 6 and ¢ stand for the
polar and azimuthal angle of the incident plane wave. F: is the electric vector potential,
and G, (z_f, 7) is the 3-D periodic Green’s function [2.12]:

0 ) —JjkR pq

- =\ e Jjk.pD,  jkyaD,
Gp(r’r )_ z z W e (26)

P=—0 g=—x0

where R, = \/(x —x'—pD,) + (y -y'—qD, )2 +(z—z')* . Applying Poisson summation
formula [2.8] to (2.6), we get

0 w0 e./’(xp(x‘x')e.f’(yq (y_y!)efyz‘ziz"

Goler)= ¥ %

p=—00 g=—0

2.7)

Kyp :227zp /D, gikx

Kyq=\279/ Dy Jrk,
where y. :,/K)fp +K‘jq —k?> . When szp +Ky2q <k?, y. is an imaginary number, and

when «; +&. >k?, y_ is a real number. Thus, the tangential part of magnetic fields

due to the equivalent magnetic currents above the upper apertures and below the lower

apertures can be expressed by

H tan [Z A_li,qu = —i—;(lﬂ +VV -).[J-S’Mi,oo (x',y')Gp (x -x',y— y')dx'dy' (2.8)
P4

where G, (x—x",y—y') can be obtained by setting z =z’ in (2.7).
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K (x=x )ejlfyq (»-»)

' —v') = N " €
Gyl=Xor =)= 2 2 =, "‘*’J:EW/DXVX

p=—o0 g=—o0
x,,~(2m/D,

(2.9)

H (—Ml), H n (—Mz), Eiaﬂ (—Mz) and ﬁiaﬂ (—Ml) can be obtained by calculating
the tangential part of magnetic field in a rectangular cavity contributed by the

corresponding magnetic current distribution inside the cavity:
E(r): —jwe” V’EHM (r,r')J\_l(r'}lV' (2.10)
where E 18 the dyadic Green’s function of magnetic (H) type produced by a magnetic

(M) source inside the cavity [2.13]. In this problem, only four components of EHM may

be needed, i.e. Gy > Gpprrys Gppg s @0d Gy, . They can be expressed as

I &< (2—5 1 (szY' | . [sxz .| sm
G = - 0 1__ - _ - !
mie =TS ZO ?:0 7/sin(7t)|: E (2aj :lsm[ y (x + a)} s1n[ E» (x'+ a)}

z z oo @.11)
T T, cos|ylz —t)|cos(yz'), z>7
COS{E(JH_[))} COS[E(J} +b)}{cosBEz'—t}]cos(yzg, z<7
e b G bl R
GHM’Xy " 2ab ;; kzysin }/t) 2a \ 2b - 2a (x+a) €08 2a (x +a) 2.12)
I | T, cos|y(z—t)|cos(yz'),  z>7 '
cos[z—b(y+b) S %(y +b)}{cos ]/EZ'—t;]COS(}/Z ,  z<Z
L (2-6) (sl Tsz NELIN
Griv e = 2ab;’;kzysin(yt)(2aj(2bjcos[2a (x+a)}1n[2a (x +a)}
/ I cos[y(z—t)]cos(yz’), z>7 2.13)
sin[— (y + b)} cos{— (y' + b)}
2 2b cos[;/(z' - t) cos(yz), z<7
1 &&(2-6) 7,
Gum,yy = 2ablz(;§ysin(yt)[1 [ ] ]cos{2 x+a}cos{ a(x +a)}
(2.14)
- ) cos(}/z'), z>7

sin{;—z()urb) «inl 1% (v + b)HCOS[J/(

cos[}/( t) cos(7 z), z<7'
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where 6, (= 1 for s or /[ = 0, and O otherwise) denotes the Kronecker delta,

y>=k*—k? = k> —(sz/2a) —(ix/2b) .

To solve the integral equations in (2.1) and (2.2), we expand the equivalent magnetic
current by means of a set of basis functions. Because entire domain functions which
incorporate edge singularity require much fewer unknowns than subsectional basis
functions or functions that do not incorporate edge singularity [2.14-2.15], the following
basis function forms are selected:

Ex/ "; ZZM”’"U (x/a)r, (v/b) (2.16)

n=0 m=0

M, = 1 E ; ZZM”’”U (y/b)(x/a) (2.17)

n=0m=0

where 7, and U, are, respectively, ith-order Chebyshev polynomials of the first and
second kind, while M ™ and M " are the unknown coefficients to be determined.

Putting (2.8) and (2.10) into the integral equations (2.1) and (2.2) for the 00th upper and

lower apertures, we get
z_;(kz +VV ')”S{, (M1x,oofc + M1y,00)7)Gp (x —x',y— y')dS’ + jws

{«”Si; [Mlx,OO (GHM’XXJQ + GHijx)A/l z=t,z'=t + Mly,OO (GHM,xyje + GHM,nyA/X z=t,z'=t ]dS’ , (218)

+ J.Sj I:AIZX,OO (GHM,XX')% + GHM,yx,j}) z=t,z'=0 + M2y,00 ((;HM,xyje + GHM,yy,)’}} z=t,z'=0 ]dS’}

—inc

= 2Htan
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Jjoe {”s;, [Mlx,oo (GHM,xx)2 + G, yx)A’} 2=0,2'= + M1y, 00 (GHM,xy)2 +Gam, yyf’ 1 2=0,2'=t ]dS '

+ J-Sz’ [M 2,00 (GHM,xxje +Gpum, yxf’l 2=0,2=0 + M2, 00 (GHM,xny +Gpu, yyﬁ} 2=0,2'=0 ]dS '} , (2.19)

+ z_;(kz +VV -)J‘J.Sf (sz,oofc + sz,oof/)Gp (x —x',y- y')dS’ _ 2512161

With help of (2.7), (2.16) and (2.17), using Galerkin’s method of moments, and

transferring the vector equations into the scalar equations, we get

R IANHNNC

n=0 m=0

U, (x/alr (y/bﬂﬂw{,fg(kz ~3, )Gy ey

+ jC()EGHM’xx

(x /a) nm
e (0 Vel ) b |
o

z=t,z’=t:| + M;}T]CO&‘ GHM,xy z=t,z'= - (x'/a)z

s dx'dy'dxdy

nm -
]+M2

27 , AV
[ ki] KpKygG)p (x—x V=Y )+]0)€GHM,xy

Uy (v [b)To ([ a)dx'dy'dxdy=2]" j_b [ J_ :E;/Z)) U, (/)T ()

(2.20)

i%fafbrj‘ ( /b) m(x/a%[M{lxm[ i;pr’(yqG (x X',y—y')

n=vum=

e 1—(x'/a)2U,x,a \y'/b o
z—t,z—O) 1—(y’/b)2 n( / )Tm (y/ )+( 1y
L

z=t,z'= ]+ M”mja)g G[-[M7 —t '
t,z=t 2y Yy 1— (x,/a)z

o dx'dy'dxdy

nm -
z=t,z'=t ]+ M2x JowE GHM,yx

+ jC()E GHM,yx

[i—;(kz - iq)Gp (x—x',y—y')+ Jog Gy

Uy (v'/b)0 () a)feix'dy'dxdy=2]" j jj E // bgj U, (y/b), (x/a)Er i

2.21)
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nm

z=0,z' t+M2x

S L ek el ol o G
|
»

(2.22)

[zj (k2 pr)Gp(x—x',y—y')+ Jjog Gy xx
n

+ (M{fv’"]a)g GHM,xy

nm 2 i ’ ’ .
=0,z + Moy, {—ékpryqu(x—x , V=Y )+ Jog Gy vy

1— Ey://b;j Uy (v /BT (x’/a)}dx'dy'dxdy =0

(y/b)Tm (x/a){(Mlx ]a)g GHM x| z=0,2"=t +M£l)rcn

ZZIIII

n=0m=0

_ ‘ .
_i_j]KxPquGp(x_x,,y—y')+ja)g GHM,yx z=0,z'=0i|J 1_(X/a) U '(X'/a)rm'(y'/b)+

1-(y/pyp "

nm 2 ! ! .
=0, + Moy, L”J](k —Kﬁq)Gp(x—x,y—y)+]a)8GHM,yy

MY joe Gy yy

1—(y'/b)2 (y /b) (x /a) dx'dy'dxdy = 0
1= (x/a)
(2.23)
The equations (2.20-2.23) can be expressed as a matrix equation form by
_[YAl(vv’)] [YBI vv)] [YCl(vv)] [YDI(V\/')]—_;]M{Z” _ _[];lm:r
Waston)] [sa] eaton)] Do) iz ]| || ]
i 1= (2.24)
Vaise)] [Foso] [Yese)] [¥osm)] 24
[Vasto] [Foseon] [Feston] [oaon ] prs]) | o]

Assuming that the numbers of basis functions in x- and y-direction are both N, then

[Y AW(W,)J, [Y BW(W,)J, [ch(w')Ja and [YDW(W,)J (w=1,2,3,4) are all NxN matrices. Putting (2.7)

and (2.11-2.14) into (2.20-2.23), and with help of the following integrals [2.16]:
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J_aﬂdx j'ral, (pa) (2.25)

V1- x/a
[* 1-(/aP U, (x/a)e ax =2 (”“)]”“(p“), (2.26)

p

and following triangular transforms

sin(x): e” ;fe_jx , cos(x): e” Jrze_jx , (2.27)
J

the analytical results of the admittance matrix elements can be obtained and the elements

of the 16 sub-matrix in (2.24) have the following forms, respectively:

2_
Fa=Colnmat IR SN VA T

=—0 g= xpyz
C (nmn’m' bii (2_50) st L
raAmre ==y tan(yt )s? 2a ) k?
(2.28)
AN AN (i el (AN A W B B8 e
n+l n+1 2 n'+1 2 n'+l1
ol Tl o
Y1) Yl(n m,n' m)abz Z Jn+1( )]n'+1(qub)] (qub)] (K a)
peo g V2
’ FANC N (2_50) ST /% s _l%
+ CYz(n,m,n,m );Z;ytan pATE J o 5 +J,4 e
(2.29)
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=0 s=0 J SIII

0 2
YCl(vv’) =—Cy; (l’l, m, l’l', m')abzz%ll — (%) kiz]

ST il ST -z ST\ J 5 ST -
JnH(?]e 2 +Jn+l(_7]e 2 }[Jn'ﬂ(?)e 2 +Jn'+l(_7)e 2 ]a (230)

2 © © (y_ 57 57
e B S 2 2]

1=0 =0 Y sin(;/ t)
i) 5 Iz i~
Im _ﬂe.z"‘Jm ——”e.z , (2.31)
2 2

| In) 7% Iz /=
e

YAZ(W') = Y1

4 5 5
Jn'+l ﬂ ej7 + Jn'+l - ﬂ e_j7 Jm ﬂ ej7 + Jm — ﬂ e_j7
2 2 > 5

(2.32)
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o o 2.2
!)az z z (sz—:yq)JnH (qub)]n'ﬂ (qub)]m (pra
p=—00 g=—00 vg/ z

-C,, (n,m,n',m’)abi]:i%ﬁ)y 1-| —

o ytanlyt

2 o

AN Y A AN
Jon| — e 2 +Jpu|l——l 2 | Jn|—l 2 +

Ypa(w) ——Cyz(n m,n',m )abz ( )

=0 5= 0751n(7’t)l

Iz i~ Iz 111
J’H—l(?Jé 2 +Jn+1(_?je. 2

YAS(W') = YCl(w') > YBS(W') = YDl(vv’)’ ch(w') = YAl(w') > YDS(W') = YBl(w')

YA4(W') = YCZ(W')’ YB4(W') = YDZ(W') H YC4(W') = YAZ(W')’ YD4(W') = YBZ(W')

where

comsi- EL 2l
Xy

b

Vo lea)

,(2.33

)

(2.36)

(2.37)

(2.38)
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c,, (n, m,n', m') = %j“m”’*m'l (n + IXn' + 1) , (2.39)

J, is the nth-order Bessel function of the first kind. Similarly, the elements of incidence

vector matrix I_I )’Z’”J and l] ;"”J can be calculated. As an example, when the incident plane

7ab o
2

wave is H = fe /® [I;”"]: 0 , and l];””J= [O]

2.3 Results and Discussions
2.3.1 Convergence Consideration

First, we consider a 0.254, -thick perforated conducting plate with 1.04, x1.04,
apertures and a periodicity of D, =D, =1.54, illuminated by an incident plane wave

—inc

H =%/ where A, 1s the wavelength in free space. In Table 2-1, the power
transmission coefficient 7 (transmitted power divided by incident power) is shown for
differing N, =N, =N, where N, N are the number of basis functions in (2.16),
(2.17), and (2.20-2.39). The transmission converges to three digits of accuracy for
N,=N, =6 . In Fig. 2-3 (a) and (b), the relative errors of an element of the
copolarization admittance matrix Y, are illustrated for varying P and Q, or S and L. Here,

P, O, § and L are separately the truncated values of p, ¢, s and /. The admittance element
corresponds to n=n"=m =m'=0. As for this element, the real part does not vary with

P, O, § and L when these parameters are natural numbers, so we set the relative error to
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be (Yexm =Y, e )/ Im(Ymct). The Y, ., 1s determined by setting P =0 =1000 and

S=L=600.

TABLE 2-1 Convergence of power transmission coefficient.

N =N, =N 2? 4 6’ 8
T 0.046 0.335 0.329 0.329
0.0 - ©PONARRAD-0 © SEEO ¢ CCLINN—0-0 6-0-0 &

Relative Error

1 1 1 1
S S S S
oo (@) BN \®)

[ " [ " [ " [ "

] 5 50 500

Fig. 2-3 (a) The relative error of the admittance element corresponding to
n=n"=m=m'=0 versus S=L.
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=0.
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!

'=m=m

Fig. 2-3 (b) The relative error of the admittance element corresponding to
n=n

— 1.4

1,
=T

Fig. 2-4 (a) The magnitude of M, _(upper interface) normalized with respect to incident

electric field.
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Fig. 2-4 (b) The magnitude of M, (lower interface) normalized with respect to incident
electric field.

2.3.2 Results and Discussions

The magnitudes of the upper and lower equivalent magnetic currents in the x-direction
M, and M, mnormalized with respect to incident electric field E" = e’ are

illustrated in Figs. 2-4 (a) and (b). The number of basis functions is N = 6, which means

that for the coefficients M " and M " in (2.16) and (2.17) 0 <n,m <35, and in (2.20-

2.39) 0<n,n',mm' <5.

In Fig. 2-5, the power transmission coefficient ¢ versus periodicity is presented. The

magnetic field H" =%e™/% is incident on an array of square apertures (a=b) with a

periodicity of D, = D, . The ratio of aperture size to periodicity is held at a/D, =0.39,

and the ratio of screen thickness to periodicity is fixed at ¢/D, =0.1. The power
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transmitted is compared to the measured data from [2.17]. It can be seen that this method
comes close to predicting the actual transmission and the significant shift of the

frequency at maximum transmission from the nominal value of 14,,. The reasons of the

shift have been explained by Durschlag and DeTemple in [2.17]. The relatively larger
difference between numerical results and experimental data for larger aperture size cases

(D, >0.954,) can be due to the experimental setup, which has also been analyzed in

[2.17]. Compared with the zero-thickness screen model, the thick screen model derived
above shows an improved agreement with the measured results. Fig. 2-6 illustrates the
comparison between the calculated results from the presented method and the method
provided by McPhedran et al. [2.18], which has depicted an excellent agreement. The

screen geometry parameters in Fig. 2-6 are a =b=0.45D, =0.45D,,,and ¢ =0.25D, .

1.0 S
0.9 al AR
0.8 o4 * N
3 l’./ \{
0.7 5y S
o 0.6 S .o >
0.5 s e
0.43 14 1/ =
0.3 pia 07'4 ® Measured [2.17]
0.2 .7‘ Calculated with our model
0.1 -'f/ ------- Calculated with a thin screen model
0.0~ S S S Y S SN |

03 04 05 0.6 0.7 08 09 1.0 1.1 1.2
Dx/ho

Fig. 2-5 The magnitude of the power transmission coefficient versus periodicity D_ . The

aperture dimensions are a =b =0.39D_ . The screen thickness ¢ = 0.1D, .
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Fig. 2-6 The magnitude of the power transmission coefficient versus periodicity D_. The
aperture dimensions are a =b = 0.45D . . The screen thickness ¢ = 0.25D, .

1.0- "_'N‘:
0.9

0.8
0.7

0.4%-—#' a=b=0.1%,
03 1 a=b=0. 27»0
1 —@— 4=bH=0.3)\

0

8? —%— a=b=0.42,
: I N— —Hl— g=)H=0.5)
0.0 | }

0001020304050607080910
Screen Thickness ()

Fig. 2-7 The effects of screen thickness for different aperture dimensions.
Fig. 2-7 shows the effects of the screen thickness on the transmission power. The four

plots shown in Fig. 2-7, respectively, correspond to four cases of aperture dimensions and
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array periodicities. The ratio of aperture size to periodicity is held at a/D, =b/D, = 3

The incident plane wave is H" =3%e™7 . When the aperture dimensions are small so
that there is no propagating mode in perforated regions, the power transmitted is only
produced by the attenuating modes, and the transmission coefficient decreases

monotonically with thickness, as shown for the 0.24, x0.24, and 0.44, x 0.44, aperture

cases. In these two cases, the incident waves are totally reflected if the plate is

sufficiently electrically thick.

0.6

05 ’/.7_;;,4L<::: \\

'éﬁ/ N &/‘

0.4- O\. < /
T g3l e 0" | I X—v
: . ~e N\
{|—A— ¢=15
o2 0 NN
| [—*— ¢=30 \
0.1 4—m— ¢=45" N
0.0 —————— . . — 1
0O 10 20 30 40 50 60 70
6 (degree)

Fig. 2-8 (a) The effects of incidence angles on the transmission power for parallel
polarization.

The transmissibility of a perforated plate depends on both the polarization and the
angle of incidence. Fig. 2-8 (a) and (b) separately illustrate the effects of incidence angles
on the transmission power for parallel and perpendicular polarizations. Here, the parallel

polarization is referred to the case that the direction of incident electric field lies in the
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plane of incident waves; similarly for perpendicular polarization, the direction of incident
electric field is normal to the plane of incident waves. The screen geometry parameters

are a=b=0.54,, D, =D, =154, t=0.254,.

0.7 / — 1
0.6 \ DEhaM!

0:5. 71\ —A— $=15°

| \ |
T 0.4- \ m— ¢:450
03 % i
0.2- \\:t\:\
0.1 X;f
0.0 T~

0 10 20 30 40 50 60 70
0 (degree)
Fig. 2-8 (b) The effects of incidence angles on the transmission power for perpendicular
polarization.
To study the effects of aperture size on the transmissibility, we fix the value of a to be

0.54¢, and vary the value of b, as shown in Fig. 2-9. The incident plane wave is

inc

H" =% + e | and the screen is a 0.254, -thick perforated plate with a

periodicity of D, =D =1.54,.

If we fix the screen geometry, but fill the periodically perforated regions with dielectric,

the scattering properties of the plate will change with the dielectric constant, as shown in
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Fig. 2-10. The geometry parameters are a =b=0.54,, D, =D, =154, t =0.254,, and
the incident plane wave is H"™ = fe7*

The aperture arrangement can also influence the scattering properties of the perforated
screen. In Fig. 2-1, when £ # 90°, that can be achieved by adjusting s, direction away

from y direction, D, should be modified to be D =D,,sinf in this case, and «, in (2.7)

and the following corresponding formulae should be modified as [2.2]

L A (2.40)

D, 7 D, tan

The power transmission coefficient differing with the value of # is shown in Fig. 2-11.

The screen geometry parameters are a =b=0.54,, D, =D_=D_, =1.54,, t =0.254,.

—inc

The incident plane wave is H = = %e /%
0.6
0.5 //
1 N
0.4 /‘/ﬂ/‘
T : A
0.3 Yo

ol |/
0.1; 7

/
A
0.0 4

00 01 02 03 04 05 06 0.7
b/

0

Fig. 2-9 The magnitude of the power transmission coefficient versus aperture width.
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Fig. 2-10 The magnitude of the power transmission coefficient versus dielectric constant.
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Fig. 2-11 The effects of aperture arrangement on the transmission power.

2.4 Conclusions

A method is developed for modeling a TIPP-PEC in spatial domain. This method is

based on periodic and cavity Green’s functions, in conjunction with an integral equation
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formulation. The entire-domain Galerkin’s technique is used to solve the magnetic field
integral equations, which has been proven very efficient when specific geometries are
considered and appropriate basis functions are selected. A very good agreement between
the results of this approach and those available data in literature has been shown, which
has demonstrated the applicability and correctness of the present approach. The full wave
analysis and formulation in this paper are conducted in the spatial domain, so the
procedure is more straightforward and simpler. Lossy or lossless materials may be filled
in the cavities for more flexible features. Although this model has been discussed in the

context of rectangular apertures, it can be generalized to apertures of other shapes.
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Chapter 3 Modelling of Infinite Probe-Excited Cavity-Backed

Aperture Array

3.1 Introduction

Cavity-backed aperture or slot antenna and array are proposed by many researchers
due to their attractive features, such as low profile and high efficiency [3.1-3.3]. To excite
the cavity-backed aperture, several methods can be used including microstrip feed and
coaxial feed at the center of the aperture or slot. It was indicated that the microstrip
feeder suffers from the conduction and dielectric loss while the direct coaxial feeder is
not appropriate for applying to the slot array [3.4]. Here the linear electric probe is
chosen to excite the apertures. This feeding structure is simple, free from conduction and

dielectric loss, high power handling and suitable for slot array application.

So far, a theoretical model has not been found in literatures to analyze this kind of
infinite array accurately and completely. In this chapter, we present an entire-domain
Galerkin’s method analysis for the probe-excited cavity-backed aperture array,
combining the spatial domain cavity Green’s function and periodic Green’s function.
This method is straightforward and simple without use of Fourier transform; its
computation time is moderate compared with other full wave methods since the closed-

form results can be obtained..
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Fig. 3-1 The unit cell geometry of a rectangular cavity-backed probe-fed aperture array.

3.2 Formulation

A general problem of a rectangular aperture array of arbitrary aperture location and
size configuration, backed by rectangular cavities, and fed by the probes inside the
cavities is considered. The unit cell geometry of the periodic array is depicted in Fig. 3-1.
The probes, cavities, and ground plane are assumed perfect conductors, and the upper
cavity wall thickness is assumed negligible. The integral equations can be established for
unknown magnetic currents over the apertures and electric currents on the probes, based
on the equivalence theorem and enforced by the boundary conditions across the apertures
and on the probes.

Across the pgth aperture (z =1¢):
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m{zﬁ?m} Tl Tl ) 6

pq

On the pqth probe:
Eunl- 3 10 )+ Eun (T )= ~Etie (3.2)
where Eiﬁﬁ pq 18 the tangential part of incident electric field in the pgth cavity. Here, the

driving source is assumed to be a delta-gap generator, so Eqo is taken to be

Eoo

—i z20 = =
inc (x’ y,Z) _ {Z (Z)’ X xf’ Y yf (33)

0, otherwise
where (x 1Y f) is the location coordinate of the 00™ feeding probe. The tangential part of

the magnetic fields due to the equivalent magnetic currents above the apertures can be

expressed as follows:

H (ZMW] = —i—j](kz +VV ')HSA_/[OO (x',y')Gp (x -x',y— y')dx'dy' (3.4)
pq

where G, (x—x', y— y') can be obtained by setting z = z' in the spectral domain form of

the 3-D periodic Green’s function [3.5].

IR (x—x’)ejK ya (y-»)

p=ooq=zoo 2Dny]/Z ‘prz ZW/DY kx
K, =27/ D, Jrk,

I
M

Gp(x—x',y—y') (3.5)

. . . 2 2 2
where k =ksinfcos¢g , k, =ksinfsing , y, =k, +k, —k* , D and D, are
respectively the periodicity in x- and y-direction. Here, (0, ¢) indicates the scan angle of
the infinite array, and (0,0) denotes the broadside. The terms, H o (— M), H (j),

Eun (— M) and Eun (j), can be obtained by calculating the tangential part of the magnetic
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and electric fields in a rectangular cavity, which are respectively contributed by the

corresponding magnetic currents and electric currents inside the cavity and expressed by:
H(-31)= joe[[[, G 7 (7 )ir (3.6)

a(7)= ][, G ) T b (3.7)

E(-31)= [[[ G -7l v (3.8)

E)=joul[] Gl 76 v (3.9)

where Gay and Gy are the dyadic Green’s function of magnetic (H) type produced

respectively by a magnetic (M) and an electric (J) source inside the cavity, while G

and E g are the dyadic Green’s function of electric (E) type produced respectively by a

magnetic (M) and an electric (J) source inside the cavity [3.6]. In this problem, four
components of G are needed, i.c. Gurrees Guni sy > G pe» and Gy, . They can be

expressed as

Iz I, cos|ylz —t) cos(yz' , z>7
cos E(y +b)} cos{g(y +b)}{cosggz' —t;]cos(}/zg, s <7

5 B e e o5+
it = 2ab ;Z:(; k*ysin(y)\ 2a \ 2b - 2a (v+a) cos 2a (&' +a) G.11)
Iz Iz cosy(z —t)]cos(y z"), z>7' .
COS{E(); * b)} Sm{zb (y * b)}{cos Ez' - t}]cos(}/zg, z<7
_ 1 oy (2—50) sz |l In ST ST,
Cinson = 2ab 15 ;‘ k*ysin(yt (Za J( ZbJCO{ 2a (x ’ a)} sm{ 2a (x ’ a)}
Iz Iz cos[;/(z = t) cos(}/z'), z>7 (3-12)
sin{— (y + b)} cos[— v+ b)}
2b 2b cos[}/(z' —~ t) cos(;/z), z<7
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1 & -s)|, 1 (ixY
Gy = 2ab;§ysin(;/t)[1 kz[ZbJ ]cos{ x+a}cos{ x+a}
)

(3.13)
sin[l—ﬂ( +b) sin{l—”( ’+b)} COS[ ( _t) COS( g e
26" b cos[;/(z ~1) cos(;/z) z<7
1 forsor/=0 s a2 o ) ) ,
where &, = 0 otherwise and y° =k" -k’ =k —(s;r/2a) —(Zﬂ/Zb) , which are

also applicable to the equations (3.20) - (3.24).

The equivalent magnetic currents on the 00" aperture are expanded in the following

basis functions:

T N

Moo (5, = J -l -, )a, P 55 S 050, [V Vully - ] 619

1__(y_ya)/ba_2 n=0m=

ssten)e [T S il 09

—Xa )/aa 1 n=0m=0
where (xa, ya) is the center coordinate of 00™ aperture, 7; and U; are, respectively, the
ith-order Chebyshev polynomials of the first and second kind, while M and M " are

the unknown coefficients to be determined.

The probe for each element of the array is assumed to consist of a cylindrical perfectly-
conducting tube of radius and vanishing wall thickness, bottom-fed by an ideal voltage

source. Since the probe radius is small, a filamentary current approximation is made. That

is, the field arising from J is assumed to result from a volume current density given by

flz(zb(x_xf)é(y_yf) (3.16)
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However, J itself is assumed to be of the form:

AR A C) I
J(x,y,z)—zzﬂrf 5(r rf) (3.17)

where

r=Jle=x, f+l-y, f (3.18)

and r, is the probe radius. Thus, the effect of the probe radius is included in the analysis.

I, (z) is expanded in the following entire-domain basis functions:

L()=31. co{wz}osmh (3.19)

w=0
where / is the length of the feeding probes, and 7, are the unknown coefficients to be
determined. This probe model is exact only for array elements consisting of tubes with
infinitesimally thin walls but should offer a good approximation for any element of small

cross section.

In equations (3.7), (3.8) and (3.9), two EHJ components, two EEM components and

one G component are needed, i.e.Gy, ., Gy ., Gpy s Gy, ., and G, . They can

be expressed as
B 0 2- 50)[ j{ (x+a)}sm{%(xr+a)}
°°S[’2—Z (r+ b)} sin| 22 (v + b)HCOS[y(t - Jeos(z") 2> =

cos[;/(t - z') cos()z), z<z'

(3.20)
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ou- eSS g el ]
figosllio b i T
G 2(111) 22 y(zs ;I(CZ)(ZZ_ZJ sm{% (x+ a)] sin{% (TC 4 a)} .
sin{lz—z (v+5) COS{ZZ—Z (' + b)H:ZEig : i))cjjs(z;zz; j Z j
G =5 ZZ sl (mj [%(x o }m[ o a)} (3.23)
sl )
e I e | FA e o

( ) x> x'
( ) x<x'
y.

Using the Galerkin’s method of moments

cos(%z}os(%zfj{zz{ oobeb
where 7% =k* ~k7* = k* ~(s/20) ~ (11

procedure, the integral equations in (3.1) and (3.2) are discretized and a matrix equation

for the unknown coefficients is thus obtained as

[Ym(w')] [Ym(w»] [Tcl(w»] [Mff’" o]
[YAzw)] [YBzw')] [Tczw)] [Mif’”] =| [o] |. (3.25)

[TAg(wr)] [Tgs(wr)] [ch(wr)] ]| 1]

The elements of 9 sub-matrices have the following forms respectively:
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Y0y = Cyy (n,m,n',m')baz Z z 2 = (praa )]n+1 (praa)] (quba)

2
b && (2-6,
> =2 e | I

Yy =—Cr (n,m,n',m' oba i ZOO‘, yLJrH—l (Kvpaa )In 41 (quba)

I (quba )/m (praa )+ T4, Cy, (n,m, n', m') ZOO: (2 v 50) (327
4a,b, 1=0 5=0

Ey(n 4 1)E, (0" 4 1)E, (m)E, (')

Y oy =—C Yl(nmn m)abZZ—J (K‘ b)l ( )

p=—0 q=
b L oaee (-s
I (a7, (kc,0b, )+ ’; a":b " C,,(nm,n'sm ),-o 20 yt(an yt‘)l){z (3.28)

E,(n+1E, (" +1)E, (m)E,(m')

S (praa )_ Cy, (”am’”"m’)aafc ii (2 _(f;))lz {1 B (211;2;6 J } (3.29)

b, &< (2 — 9, )l in| ——
Ty =—C; (l’l, m)g;éz;‘mfhy (Vl + I)EJI (m)Sln|: 2a. (xf ta, )} (330,
- l_;z(y y ) sm[(w n 1/2) 7h] . sin[(w' + 1/2)7z + 7h] |
26 TN T W 2e— s W2
~ A, (2 — &, )S in| ~
Tep) = Cr (n,m)a—fg(;xz:(; Jsinly1 lEJl (n + l)EJs (m)sm{zac (xf ta, )} a3

S ir sin[(w +1/2) ;/h] sm[(w +1/2)7z+7h]
SIHLZ_(J’f +bc) { w'+1/2)z — h (W +1/2)z + }
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[TA3(W')] = [Tc1(w')] ' ) [TB3(W')] = [Tcz(w')]T (3.32)

sin{(w + 1/2)7[ - lf h}

sin[y'(ac — X, )]sin[;/'(ac +x, (we12)e “In (3.33)
h t
sin{(w +1/2)7 + lf h} sin{(w' +1/2)7 - lf h} sin{(w’ +1/2)7 + Zf h}
(w12 iz W12 iz T Wik ix
h t h t h t
where
—1 n'+m' 4 p+man'+m'+1 1’ +1
Cy,(nym,n’m’) = SV DD -+ o' +1) (3.34)
c,, (n, m,n', m') = %j”“’””’“”'l (n + IXn' + 1) (3.35)
C,(nm)= ’i—;h J" (n+1) (3.36)
ST 2 (a,+x,) ST — 22 (g, +x,)
E, (1) = Ji( a, le > +J, (— a, ]e 24 (3.37)
2a, 2a,
] P (b4 y,) ] T i)
E,(i)= J,.[zz; bl Jl.(— 2;’0 b, Je 2 (3.38)

and J; is the ith-order Bessel function of the first kind, superscript 7" represents matrix

transpose.

3.3 Results and Discussions

3.3.1 Convergence Consideration
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The numerical results are firstly demonstrated for the entire aperture case, where the
entire cavity aperture is chosen to be the radiating element. The probe locations are
chosen to be at the bottom centers of the cavities which they reside in. And without

additional specification, the array scan direction is at broadside.

We consider an infinite array with 0.251-long feeding probes. Each cavity aperture
dimension (2a X 2b) is 1.0A X 1.04, the periodicities D= D, =1.54, and cavity depth
=0.31. Table 3-1 shows the convergence of input impedance with the number of basis
functions used to expand the probe current. For the number of basis functions used to
expand the equivalent magnetic currents on the apertures, the convergence issue has
already been considered in the relevant scattering problem [3.6], and it will not be shown
here. Table 3-2 illustrates the convergence of the matrix element value (¥,4;1)) with the

truncated values of a cavity Green’s function component (G, .. ). For other relevant

cavity Green’s function components and periodic Green’s function, the convergence has

been considered similarly and some of the results have already been shown in [3.7].

Table 3-1 Convergence of input impedance with probe current basis function number.

/4 Zin(ohms)

3 21.1211-j18.1955
5 21.0421-j17.9398
7 21.0042-j17.7915
9 20.9820-/17.6915
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Fig. 3-2 (a) Comparison of the probe input resistance between array results from our
method and single element results from IE3D 9.1 simulation.
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Fig. 3-2 (b) Comparison of the probe input reactance between array results from our
method and single element results from IE3D 9.1 simulation.



Table 3-2 Convergence of the matrix element value (Y4;¢11)) with the truncated values of
a cavity Green’s function component (G, .. ).

T S Matrix Element Value
20 600 j10.6290
50 600 j11.4154
100 600 j11.6005
200 600 j11.6644
300 600 j11.6775
350 600 j11.6804
350 300 Jj11.7326
350 400 j11.7058
350 500 j11.6903
350 600 j11.6804

3.3.2 Input Impedance, Current Distributions, Reflection Coefficient, and Active
Element Pattern

Since no previous experimental or computational results for this kind of array were
found in literature and limited by the experimental condition, to have an independent
check of the developed numerical code, the probe input impedance for an infinite array
with large periodicities in both x- and y-directions (whose coupling effect is relatively
small) is computed, and compared with the results of a single element case from IE3D
9.1 simulation by varying the electric dimensions of feeding probes and backed cavities.
The ratios between probe length % and cavity dimensions are fixed to be a=b=0.964, t=
1.02A. For the periodicities, which are not contained in the single element simulation, we
fix their electric lengths to be D= D, =1.51/. This fixed relatively large periodicity value

makes the coupling effect between array elements almost constant and small compared
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with the element structure effect itself. The comparisons are shown in Figs. 3-2 (a) and (b)
for the real and imaginary parts of input impedance respectively. Good agreement is
observed concerning the reactance, taking into consideration the coupling effect. For the
resistance, a constant gap is observed between the array results and single element results,
because the radiated energy is mainly indicated by the resistance so that the coupling
affects it more than reactance. Also, we can find that when the electric dimension of
probe length increases, the aperture size increases too, and the adjacent aperture edges are
closer, so coupling effect is more significant and the agreement is beginning to degrade

for large aperture cases.
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Fig. 3-3 Probe input impedance varying with cavity depth.
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Fig. 3-5 Probe input impedance varying with periodicity.
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After the above comparison and validation, we give out some figures to show the
effects of cavity depth, aperture size, and periodicity for the infinite probe-excited cavity-
backed aperture array. The probe length is fixed to be #=0.233/ in Figs. 3-3 ~ 3-5. In Fig.
3-3, the probe input impedance versus cavity depth is shown. The aperture size is 0.664 X
0.664, and the periodicities are D,= D, =1.511. We notice that when the backed cavities
get deeper, both real and imaginary parts of the input impedance decrease, more source
energy is reflected back and cannot radiate out. Fig. 3-4 illustrates the effects of aperture
size on input impedance for an entire square aperture case. The cavity depth and
periodicities are fixed to be r=0.2384 and D= D, =1.514. A resonant condition is
obtained when the aperture size (2a X 2b) is around 0.7644X0.7644. In Fig. 3-5, the input
impedance versus periodicity (D,= D,) is shown. The cavity depth and aperture size are
fixed to be r=0.2381 and 0.664 X 0.664. It can be noticed that when the periodicity is less
than 14, the real part of input impedance is nearly zero, the probe is like an inductor and
most of the source energy cannot radiate out. This indicates that the coupling effects will

dominate the array radiated energy when the periodicity is no larger than 14.

Figs. 3-6 (a) and (b) show the amplitude and phase of probe electric current

distribution 7, (z) for the array with three probe lengths 0.154, 0.254 and 0.294. The
cavity aperture dimensions (2a X2b) are 1.04X1.04, the periodicities are D= D, =1.54,

and cavity depth is /=0.34. It can be seen that the amplitude of probe current has a basic

sin[k(h —z)] variation. For short probes (4 <0.154), we can see the probe current is
almost a linear function of z, which is expected since sinlk(z—h) zk(z—h) when

h/A <0.15. Figs. 3-7 (a) and (b) illustrate the real and imaginary parts of the equivalent
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magnetic currents over the cavity apertures, respectively. The probe length is 4=0.25A,

and other dimensions are the same as those in Figs 3-6 (a) and (b).

Z‘é/ 35‘_ - —-h=0.152

-;; 30 4 —h=0.25)

= . —-—-h=0.292

a, 25-

g 20]

§ 154 . i

3 101 o

0]

© 54 _

= e T S~

Q—i O L] L] ——= L] L] L] '.\I
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Fig. 3-6 (a) Probe current amplitude distribution with parameter: 4#/1=0.15, 0.25, 0.29.
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Fig. 3-6 (b) Probe current phase distribution with parameter: #/4=0.15, 0.25, 0.29.
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Fig. 3-7 (a) The real part of the equivalent magnetic current in the x direction above the

Fig. 3-7 (b) The imaginary part of the equivalent magnetic current in the x direction
above the 00" cavity aperture.
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The scan performance of the infinite array is evaluated by calculating the reflection

coefficient against the scan angle, as carried out in [3.8] using

_ Zu(6.9)-Z.,(0,0)
H(o.9)= Z:n(0.4)+ 23,(0,0) 339

where Z;, (0,0) is the input impedance of the feeding probe at broadside. In the calculated
example here, the array is chosen near its resonance, which means its input impedance at
broadside is almost purely resistive. Figs. 3-8 (a) and (b), respectively, show the
reflection coefficient amplitude and phase in two planes versus scan angle for an infinite
probe-excited cavity-backed aperture array. (The “D plane” is an intercardinal plane with
@ =45°.) Since the feeding probes are located at the cavity bottom centers, the reflection
coefficient in the y-z plane is the same as that in the x-z plane. The reflection coefficient
amplitude is zero at broadside and increase as the beam is scanned due to the probe
impedance variation. The cavity aperture dimensions (2a X2b) are 0.7644X0.7644, the
probe length is £#=0.2334, the periodicities are D,= D, =1.514, and the cavity depth is

t=0.2384. The normalized active element gain pattern G(9,¢) is related to the reflection

coefficient as

G(0.4)= (1 - \R(9,¢]2)cos 0 (3.40)

To get the final active element gain pattern, we still need to know the element gain at

broadside G,. The averaged far field radiated power in a D, xD, region can be

calculated by means of the usual expression

1 Dy Dy
P, :EUOI@I@ Hf"dxdy (3.41)
2 2

where the magnetic field in the far zone can be calculated by
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F{ZMM] = —%(kz +vv | [Mulx,y)a, (.7 Javay (3.42)
p-q

n

Here, G, (;, ?) is the 3-D periodic Green’s function

o ©  ® J'pr(x—x') jqu(y*y') —}/Z‘Z—Z"
G (’"”"): >y ° : (3.43)
e 20Dy ‘pr=5271p/ D, ;:kx
qu: 27z-q/Dy ky

With the equivalent magnetic current, we can easily calculate the far zone radiated power.

And the averaged input power can be got by

V.z
Py =Re 2 (3.44)

For the broadside array, Z,, = Z,, (0,0), so the active element gain is

G, =" (3.45)

Multiplying G, by G(9,¢), the active element gain pattern can be obtained. In Fig. 3-9,

the active element gain patterns versus scan angle are shown in the two planes, and the
array dimensions are the same as those in Figs. 3-8 (a) and (b). It can be seen that in the

D plane, there occurs a serious scan attenuation when the scan angle is around 30°.
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Fig. 3-8 (a) Reflection coefficient amplitude of the infinite probe-excited cavity-backed

aperture array.
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Fig. 3-8 (b) Reflection coefficient phase of the infinite probe-excited cavity-backed

aperture array.
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Fig. 3-9 Normalised active element gain pattern of the infinite probe-excited cavity-
backed aperture array.
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Fig. 3-10 Probe input impedance varying with cut aperture width.
Next, we consider a more general case, the aperture cut on the cavity upper wall

smaller than the entire cavity upper surface. The feeding probes are still at the cavity
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bottom centers. In Figs 3-10 and 3-11, the cavity and probe dimensions are the same as

those in Fig. 3-9, and the periodicities are D= D, =1.51/. In Fig. 3-10, the length (b,) of

the cut aperture is fixed to be 0.254, and the probe input impedance varies with the

aperture width (a,). A resonant condition occurs when the aperture width is a little

smaller than 0.1754. Fig. 3-11 illustrates the effects of cut slot (aperture) location on the

input impedance. In Fig. 3-11, the slot length is 5, =0.254 , the slot width is

a, =0.0244 , and the center of the 00" slot is at (xa ,O).
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Fig. 3-11 Probe input impedance varying with cut aperture location.

3.4 Conclusions

Based on the spatial domain cavity Green’s function and periodic Green’s function, we
have presented an entire-domain Galerkin’s procedure for the accurate and efficient

modelling of infinite probe-excited and cavity-backed aperture array. The array results
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from our method are compared with single element results from IE3D simulation, and the

effects of different structure parameters are discussed.
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Chapter 4 Modelling of Infinite Planar Dipole Array with a

Periodically Excavated Ground Plane

4.1 Introduction

Large planar phased array of thin conducting radiators has been found to have many
applications as corporate fed antennas and as lenses. Their attractiveness is due, in part,
to light weight and low cost. Since the properties of all but the outermost elements of a
large array are similar to those of an element in an infinite array environment (except
when a grating lobe of the array is near endfire), studies of the analytically convenient

infinite array structures are common [4.1-4.3].

It has been noticed that the existing methods are mainly applied to the infinite array
without a ground plane or with a planar ground plane. In some cases, the ground plane
may not be purely planar but with periodically arranged cavities or holes, due to some
natural or artificial reasons. So far, the analysis for the array with this kind of ground

plane has not been found in literatures.

Here, a full wave analysis is presented for the infinite planar dipole array with a
periodically excavated (but not perforated) ground plane. This method is based on the
periodic and cavity Green’s functions, and entire-domain Galerkin’s technique is used to
solve the integral equations. The numerical results from the present method are compared
with those from previous methods in literatures for some special cases, which can be used

to validate the accuracy of this method. Also, the properties of this kind of array are
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shown and discussed. The present method can be easily extended to the case of a ground

plane with periodically perforated holes.

Fig. 4-1 The geometry of the dipole array above a ground plane with periodically
arranged concave cavities.

4.2 The Dipole Array above a Ground Plane with Periodically

Arranged Concave Rectangular Cavities

4.2.1 Formulation

The geometry of the antenna array with ground plane under consideration is shown in
Fig. 4-1. Each element of the array is assumed to be a thin perfectly conducting dipole,
center-fed at a gap of infinitesimal width by an ideal voltage source. The cavity walls and
ground plane are assumed perfect conductors. The integral equations can be established
for unknown magnetic currents over the cavity apertures and electric currents on the
dipoles, based on the field equivalence theorem and enforced by the boundary conditions

across the apertures and on the dipoles.
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Across the pgth aperture:
ﬁtan (Zﬁpq +Z Mimage,pq J + ﬁtan (ijq + Zjimage,pq ] = ﬁtan (— Mpq ) (41)
X X P X
On the pgth dipole:

Etan (z Mpq +Z Mimage,pq J + Etan {Z qu + zjimage,pq J = —Els;,pq (42)

p.q pP.q pP.q p-q
where A_limage,pq and jimage, pq are, respectively, the image of the pgth magnetic and

electric current, produced by the ground plane. And from image theory, when we assume

the ground plane as a perfect electric conductor, and the dipole elements are parallel to

—inc

the ground upper surface, Ml’mage, pg = M pg and jimage, pg = -J pg - Ewnpg 1s the
tangential part of incident electric field in the pgth cavity. Here, the driving source is

assumed to be a delta-gap generator, and when the dipole collinear direction is parallel to

y-direction and the array plane is z =/, Eoo is taken to be

Eoo (4.3)

—inc .)’}é‘(y = Ye,00 )a X =Xc00,2 = h
(v 2,2)= .
0, otherwise
where (xc,OO’ yc,OO) is the center coordinate of the 00™ dipole element in the array plane.

The magnetic and electric fields due to the electric currents on the dipoles and the

equivalent magnetic currents above the apertures can be derived and expressed as [4.4]

ﬁ[zmﬁzim]:wh;(wxfM)

JOH (4.4)

=V x _( )G (rr)dl’ j—( +VV )” ()G (rr)dS’
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v [ W s o T A

where G, (1_”,7) is the 3-D periodic Green’s functions

E(zmq+ziqu_vxﬂ;(wwz_i)
p.q

ijp(x x)ejlfyq(y y')e—yz‘z—z"

G )= 3 ¢
P( ) pzz—ooq;w 2Dny72 ‘pr=g2@/Dx;Ikx

K= 27rq/Dy

(4.5)

(4.6)

where k, =ksinfcos¢ , k, =ksinfsing , and y, =1/K§p+1(§q —k*> . Here, (9,¢)

indicates the scan angle of the infinite array, and (0,0) denotes the broadside. The term

H tn (— M pq) in (4.1) can be obtained by calculating the tangential part of the magnetic

field in a rectangular cavity, contributed by magnetic currents inside the cavity and

expressed by:

H-31)= jwe[[] G (rr)- M v

(4.7)

where EHM is the dyadic Green’s function of magnetic (H) type produced by a magnetic

(M) source inside the cavity [4.5]. In this problem, four components of Gy are needed,

Le. Gy Gy s Gungye» @and Gy, They can be expressed as

1 &Y 2-46,) b st | . ST ST,
Gy = 2ab,z;‘;7/sin(}/t)|:1 e (251) sin o (x+a) sin % (x +a)

Iz I, , cos[y(z —t)]cos(y z'), z>7

cos{%(y+b)} cos[%(y +b)}{cosB/§z’—t;]cos(}/zg, s <7

(4.8)
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S
Nk
Ngf
bl
| =

i;fzﬁﬂ(Zal(é’;lsm[%aﬂcos[%wﬂ

4.9
lﬂ'( b) cos cos 72 z>7 9
COSEJHL sinj — cos|y z—t cos;/z z<7
s bea) .
Gy e = ab ;‘;‘kzysin 7 [ ][ ] " x+a }sm{ (x +a)}
Iz Iz cos }/(z t)]cos(}/z ) z>7' (4.10)
ﬂn._<y+b{ko{__@/+bﬂ
2b 2b cos[y(z' t)]cos(}/z), z<7
G _ ! ii (2_50) 1—L Iz 2 cos ﬂ(x+a) cos ﬂ(x'Jra)
ey ab S S ysin(ye)| k226 2a 2a
4.11)

!

Sin|:12—72(y +b) Sin{l_”(y, N b)HCOS[V(z —t)lcos(yz')  z>z

cos[;/(z' - t) cos(;/z), z<z7

I forsor/=0
where &, ={ . (;rtflgwise and y? = k> — k> = k* —(sz/2a) —(iz/20) .

The equivalent magnetic currents on the 00" aperture are expanded in the following

basis functions [4.6]:

M, = 1-(x/a )ZZM"mU,l(x/a)Tm(y/b) (4.12)

1-(y/bf 12

M, < E{ﬁwamew@ @.13)

n=0 m=0
where 7; and U; are respectively ith-order Chebyshev polynomials of the first and second

kind, while M™and M " are the unknown coefficients to be determined.
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Since the probe radius is small, a filamentary current approximation is made. That is,
the field arising from J is assumed to result from a volume current density given by
31, (1)5(x = x4 )o(z = ) (4.14)

where x, is the axial x-coordinate of the considered dipole through which J flows.

However, J itself is assumed to be of the form:

— 1
J(x,y,z)zfz%y)é'(r—rd) (4.15)
d

where

r=y(x—x; f +(z-n) (4.16)
and r, is the dipole radius. Thus, the effect of the dipole radius is included in the analysis.

I, (y) is expanded in the following entire-domain basis functions:

Y=Y ’
1‘( ld/zj

where /, is the length of each dipole element, y. is the central y-coordinate of the

< Y-y
>1U, Cly. =1 /2<y<y +1, /2 (4.17)
w=0 ld/2

considered dipole, and /,, are the unknown coefficients to be determined.
Using the Galerkin’s type solution procedure, the integral equations in (4.1) and (4.2)
are discretized and a matrix equation for the unknown coefficients is thus obtained as
[YAI(W')] [YBI(W')] [TCI(W')] [M)’:m [0]
[YAZ(W')] [YBZ(W')] [TCZ(W')] [M;m] = [0] . (418)
(L] o] [2eson ]|, 1] | [0 (0]
where U, is wth-order Chebyshev polynomials of the second kind. If the upper cavity

aperture plane is set to be z=0, and other geometry assumptions are according to the
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previous descriptions, the elements of 9 sub-matrices have the following forms

respectively:

=l 5 3 E 5ol

Pp=—00 g=—0 Kxp)z
, o (2 50) (_ ST ?
T (i3qb) = Cya (n,m, 1 m)ablz():gytan( )ﬂl - (4.19)

Es(n+1)E s (0" +1)E  (m)E. (m')

YBl(vv) - CYl(n m, I’Z m )ab Z Z n+1(pr )Jn'+l(’(yqb)

:700q —0 Z
2 RN
T3y (i pa )+ ”Tcm(n,m,n .m )Z=O§W (4.20)
E (l’l + 1)EJ1 (l’l’ + 1)EJ1 (m)EJS (I’I’l’)

YAZ(VV) - _CYI (l’l m, I’l m )ab Z Z n+l(qu )jn'+l(pra)
p=—00 g=—00 Yz

2 © © J—
T (i ep@ ) (i) + %Cyz(n,m,n',m’)zz(zTé;o)])cz 4.21)

En(n+1)E (0" +1)E 1 (m)E, (m')

Yao(w) = Cy1(n m,n' m)a2 Z z ( qu) n+1(qub)~]n+l(qub)J (pr )

p=—0q= yq Yz

ot (i)~ Cya(n.mn’ ' Yab> S 2 (2-30) [1—(1” T} (4.22)

1=0 5= Oytan()/t)l L 2kb
En(n+1)E;(n' +1)E s (m)E 1 (m')

Ts(w) = (_ l)w /m+n+w z b(n s IXW u 1) Z Z 1 (pra)J (qub)*lw +1(quld J

D.D, .~ 2
4.23
[ ,.,%%hh] (4.23)
e
KxpKyq
T3(w) =0 Teif) =0 [Tt = [Ta30]” 4.4
B3(vv') =Y, Cl(vv') =Y, CZ(VV') = B3(vv') ( . )
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(AW wewe 7z277(w+1Xw’+1) R (kz—/cﬁq)
Zespw) =(-1)" ) WD, X

2
p=—og=—o0 JzKyq
[ [
Jw+1 [Ky; d }]w’ﬂ [Ky; a j
(1 —e et )

Yz

where

(— 1)",“"' gt e (n + IXn' + 1)
kanDy

CYl(n,m,n',m')z

C,, (n, m,n’, m') = —7[2;080 el (n + IXn' + 1)

E (l) =J; (%]ejz +J; (— %]e_jz

in I
EJl(i): J,-(%[]ej 2 +J,~[—%Tje 2

and J; is the ith-order Bessel function of the first kind.

4.2.2 Results and Discussions

1) Accuracy Validation

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

To validate the accuracy of this method, we consider an ultimate case of this type of

antenna array. We set the depth of each concave cavity to be very small (close to zero),

then the effects of the cavity array can be nearly neglected and the ground plane is similar

to a purely planar one. In this case, the properties of the dipole array should be close to

those of the traditional dipole array with a planar ground plane.

Fig. 4-2 gives the normalized resistance and normalized reactance as a function of scan
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angle for three planes of scan. (The “D plane” is an intercardinal plane with ¢ =45°.)
The geometry parameters are a=b=0.125/, cavity depth d=0.00014, periodicities D,= D,
=0.54, dipole element length 1,=0.51, and the array plane is 4/4 above the ground plane
upper surface, i.e. #=0.25 A. In Fig. 4-2, the results for the above geometry computed
from our method are compared with those of the same dipole array 1/4 above a planar
ground plane, computed based on sinusoidally distributed current predictions [4.1]. We
can see that the agreement is very well. And for the value of broadside impedance, our
result for the above geometry is 166+j34 ohms, which is close to the result given in [4.2]

for the same thin-dipole array 1/4 above a planar ground plane.

X Results from [4.1]
Results by the
12 Present Method
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Fig. 4-2 (a) Normalized radiation resistance variation with scan angle.
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Fig. 4-2 (b) Normalized radiation reactance variation with scan angle.
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Fig. 4-3 The electric current distribution on each dipole element in a broadside array.
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Fig. 4-4 (a) The x-component of the magnetic current above the 00" cavity aperture in a
broadside array.
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Fig. 4-4 (b) The y-component of the magnetic current above the 00" cavity aperture in a
broadside array.
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2) Electric and Equivalent Magnetic Current Distributions
Fig. 4-3 shows the amplitude of the electric current on a half-wavelength dipole

element in an infinite planar broadside array 1/4 above a ground plane with periodically
arranged A/2 -depth concave rectangular cavities. The other geometry parameters are the

same as those in Fig. 4-2 for the solid-line results. Fig. 4-4 illustrates the equivalent
magnetic current distribution above the 00" cavity aperture for the same array considered
in Fig. 4-3. For the broadside array, the magnetic current distributions above all cavity

apertures are the same.

3) The Effects of Changing Some Geometry Parameters

Here, we illustrate some figures to show the effects of changing cavity depth and
aperture size of the broadside infinite planar dipole array above a ground plane with
periodically arranged concave rectangular cavities. In Fig. 4-5, the input impedance
versus cavity depth is shown. Except the depth, other array parameters are the same as
those in Fig. 4-3. We notice that when the backed cavities get deeper, the real part of the
input impedance is almost constant, but the imaginary part increases gradually to a
certain value and then remains constant. In Fig. 4-6, we illustrate the effects of aperture
size on input impedance for a square aperture case. Except the aperture size, other array
parameters are also the same as those in Fig. 4-3. With the aperture size increasing, the
real and imaginary parts of the input impedance respectively increase and decrease

slowly.
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Fig. 4-6 Broadside input impedance varying with square aperture side length.

4.3 The Dipole Array “Embedded” in a Ground Plane with Periodically

Arranged Concave Rectangular Cavities
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4.3.1 Formulation

The geometry of the antenna array with ground plane under consideration is shown in

Fig. 4-7. The dipole elements are embedded in the cavities (below the upper surface of

the ground plane).

: s
\r' M%z

PV =4
A g 2 B
W ik 4
/D—x)/

Fig. 4-7 The geometry of the dipole array embedded in a ground plane with periodically
arranged concave cavities.

The modelling procedure for this geometry is similar to that for the infinite probe-
excited cavity-backed aperture array in Chapter 3. Here, only the differences are given.
For this problem, the basis functions to expand the dipole currents are the same as those
in (4.17) of Section 4.2.1, the Chebyshev polynomials of the second kind and their
associated weights. The needed cavity Green’s function components include G, .. ,
GHM’xy, GHM,yx, GHM,W, Guixys Guyyy > and Gy, . The expressions of G, .., GHM’xy,
Guy,. » and Gpy, - can be found in (3.10~3.13) in Chapter 3. The other three

components’ expressions are given by
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where &, ={ 0 (:t;::wise .y =k =k =k>—(sz/2af —(x/2b} , and

y'* =k>—k!> =k* =(sz/2b) (/). Using entire-domain Galerkin’s technique, the

following matrix form of boundary conditions can be obtained:

o] Wonon] [reso T a2 [o]
[YAZ(W')] [YBZ(W')] [TCZ(VV')] [M)’/lm] = [0] . (432)

L] [Toson] [Zeso]) [10] | [FU0)]

The sub-matrices [Y Al(w')J, lY Bl(w')J, [Y Az(w')J, and [Y BZ(W’)J have the same form as those

in (3.26~3.29) of Chapter 3. The other sub-matrix expressions are given by

Teifw) = Zb e 1(71 +1)(w + I)ZZ(T_T)Sln[y(Zd +t) sm[ 27[]
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ST Iz Iz
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I i I Y
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Teaw) =0, [TA3(vv')] = [Ta(vv’)]T , [TB3(W')] - [Tcz(vv’)]T , (4.34)
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where z, is the z-coordinate of the dipole elements (small than O since the in Fig. 4-7, the

ground plane upper surface is set to be z=0).

4.3.2 Results and Discussions
1) Model Validation

To validate the developed numerical code, we consider an ultimate case of this array.
We let the dipole elements very close to and “below” the cavity upper apertures. As an
example, we set z; =—0.00011, and other array parameters are, a=b=0.34, cavity depth
d=0.25014, periodicities D,= D, =0.754, dipole element length /;=0.54. The calculated
input impedance of this “embedded” array at broadside is 210.36+150.89 Q. Then we let
the dipole elements very close to but “above” the cavity upper apertures, and obtain the
broadside array input impedance using the model presented in Section 4.2 by letting the
dipole located above the cavity apertures. For example, we can set the 00" dipole element
center at (Xc,oo, yc,00)= (0,0), other dipole elements also superposing with the relevant
cavity aperture center, 4 =0.00014, and other geometry parameters the same as the
above “embedded” array. The calculated input impedance for this array at broadside is
214.19+j152.78 Q. Actually, these two arrays are quite close to each other in geometry

since the distance between dipole elements and cavity upper apertures is very small in
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electric length. Thus, the input impedances of these two arrays should also be close to
each other. Our actual calculated results have shown a very good agreement, and as the
two results are respectively obtained from two different model procedures, the agreement

has validated the correctness of the models both in this Section and in Section 4.2.
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Fig. 4-8 Broadside input impedance varying with cavity depth for “embedded” array.
2) The Effects of Changing Some Geometry Parameters

Similarly, we give some figures to show the effects of changing cavity depth and
aperture size of the broadside infinite planar dipole array “embedded” in a ground plane
with periodically arranged concave rectangular cavities. In Fig. 4-8, the input impedance
versus cavity depth is shown. The distance between dipole elements and cavity bottom
surface is fixed to be 0.251, which means the actual varied part is the distance between
dipole elements and cavity upper aperture surface. Other geometry parameters are,
a=b=0.34, periodicities D= D, =0.75/, dipole element length /;=0.51. In Fig. 4-9, the

broadside input impedance versus square cavity aperture side length (2a=2b) is
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illustrated. The cavity depth is fixed to be 0.25014, and the distance between dipole
elements and cavity bottom surface is still 0.251. Other geometry parameters are the same

as those in Fig. 4-8.
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Fig. 4-9 Broadside input impedance varying with square cavity aperture side length for
“embedded” array.

4.4 Conclusions

An integral equation formulation approach in spatial domain, in conjunction with
periodic and cavity Green’s functions, has been employed in modelling infinite planar
dipole array with a periodically excavated ground plane. Entire-domain Galerkin’s
technique is used to solve the electric and magnetic field integral equation. A good
agreement between the results of this approach and those available data in literature has
been shown, and this demonstrates the applicability and accuracy of the present approach.
The present analysis leads to a solution in the spatial domain, avoids the Fourier
transform, and the computational time is moderate. Although this model is discussed in

the context of excavated ground plane, it can be easily generalized to perforated ground
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plane case by adding an integral equation enforced by the boundary condition across the

lower apertures, similar to that in Chapter 2.
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Chapter 5 Study on the Suspended Plate Antennas with an

Inclined Ground Plane

5.1 Problem Descriptions and Theory

In the design of patch antenna array, the mutual coupling between elements is an
important factor affecting array dimensions and electric performances of the antenna
array. Generally, when a properly matched individual element is placed in an array, its
terminal properties related to side lobe levels, nulls, and grating lobes may change due to
mutual coupling effects. So far, many theoretical models have been presented for
evaluating the mutual coupling between patch antennas with a planar ground plane. The
main existing models include full-wave analysis based on moment method [5.1, 5.2],
cavity model [5.3, 5.4], and transmission-line model [5.5, 5.6]. However, the calculations
based on these theoretical models are usually time-consuming although the results agree

well with the measurement.

Suspended plate antennas (SPAs) without surface waves have been widely used in
broadband applications [5.7, 5.8]. Sometimes they are installed on an inclined ground

plane as illustrated in Fig. 5-1.

Here, an approximate formula for evaluating the mutual coupling between the square
SPAs above an inclined ground plane is presented, which is based on the Newton and
Chebyshev interpolations and simulation data. The formula is experimentally verified and

can be used for fast estimating coupling coefficients of two SPAs.
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Fig. 5-1 Geometry of two H plane coupled plate antennas with an inclined ground plane.
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For patch antennas on a dielectric substrate, the mutual coupling between patches is
mainly due to space wave and surface wave [5.9]. A closed form expression for the
coupling coefficient between two H plane coupled half-wavelength rectangular patches

on a planar substrate was given based on experimental investigations [5.10].

In this study, we use probe-fed square SPAs to eliminate the effects of surface waves.
To study the influences of an inclined ground plane, the square plates are chosen. The
spacing between the plate and ground plane is fixed to be 8 mm for a broad bandwidth
application. As illustrated in Fig. 5-1, the distance between two plates can be decomposed
into a horizontal distance d and a vertical distance 4. The decomposition is based on
different contributions of d and 4 to the mutual coupling. In our investigation, the bent
angle of the ground plane @ is found to be a minor factor to affect mutual coupling as
compared with d and 4. The mutual coupling between the SPAs is mainly due to the

space wave coupling. The inclined ground plane actually forms a wedge, which scatters

83



the waves radiated by the two SPAs. Consequently, although the two SPAs cannot “see”
each other when the bent angle € and the SPA location are chosen to be some certain
values, their coupling function is still continuous. Thus, we can use interpolation to get
the approximate formula for the mutual coupling between the SPAs. Based on space

relationship, the coupling coefficient for the case shown in Fig. 1 is given by

_ p2( 9, o B
|S21|—\/D [}J+H (}J (5.1)

If we choose A as the unit of d and 4, (1) can be simplified as

1S,,| = /D> (d)+ H*(n) (5.2)
Here, the functions, D and H, respectively, stand for the contributions of d and % to the

mutual coupling between the two SPAs.

—a— Measurement S11
s Measurement S21
—=—Measurement 522
~—-m— Simulation S$11
—¥— Simulation S21
—¢— Simulation $22

18] (dB)

-70
Frequency (GHz)

Fig. 5-2 A set of typical plots for S parameters of antennas with an inclined ground plane:
measured results and IE3D simulated results.
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Fig. 5-3 (a) Coupling coefficient as a function of horizontal distance for A plane coupled
square plates with an inclined ground plane: f, =1.9GHz, a =b=70mm, h=0.54,

and 8 =90°.
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Fig. 5-3 (b) Coupling coefficient as a function of vertical distance for A plane coupled
square plates with an inclined ground plane: f, =1.9GHz, a=b=70mm, d =0.24,

and 6 =90°.

85



-15- 120

1 * Relative Error
-20- Simulation Results | 15
S, _25: Ny ¥ = = Our Formula Results ‘ Relati\ofe
(dB) ) \ * 1 OEl'l'Ol' ( A])
_30" R \ ‘
354 =~ 15
-40- T
T ] o L] 0
0.0 0.4 0.8 1.6
d (1)

Fig. 5-4 (a) Coupling coefficient as a function of horizontal distance for £ plane coupled
square plates with an inclined ground plane: f, =1.9GHz, a=b=70mm, h=0.54,

and 6 =90°.
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Fig. 5-4 (b) Coupling coefficient as a function of vertical distance for £ plane coupled
square plates with an inclined ground plane: f, =1.9GHz, a=b=70mm, d =0.24,

and 6 =90°.
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5.2 Results and Discussions

A thorough investigation has been made on the mutual coupling between the square
SPAs fed by an 8-mm long probe. One of the typical plots for S parameters of antennas
with an inclined ground plane is shown in Fig. 5-2. It can be seen that the IE3D simulated
results agree well with the measured ones. Therefore, we can use the simulated results as

a reference in subsequent discussions.

Herein, Newton interpolation and Chebyshev interpolation are used to get the
expressions of D(d) and H(h) in (5.2). The descriptions of the Newton and Chebyshev
interpolations as well as their error estimates are given in Appendix. The evaluated
results are given as follows:

(i) for two H plane coupled plates:

D(d)=—-8.090555d° +49.827425d° ~115.396558d * +123.729870d°

(5.3)
—47.765168d > —24.533439d —15.752697,

H(h)=588.223350h° —725.394600h* +175.614253h° +85.908346/ (5.4)

—82.653005k; '

(1) for two E plane coupled plates:

D(d)=-14.905164d° +77.423584d° —145.411772d* +106.3125594° 59

+6.984576d % —59.674870d —3.794269, '
H(h)=2604.898336/° —3409.010004/4* +1365.867585h> — 45.423200/ (5.6)

—84.8688864.

Based on the formulae in (5.2)~(5.6), we can obtain some typical plots for coupling
coefficient |S;;| varying with d and 4 when the others are fixed. Shown in Fig. 5-3 is the

coupling coefficient for H plane coupled plates with an inclined ground plane, and
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depicted in Fig. 5-4 is that for £ plane coupled plates. The simulated results are also
shown in Figs. 5-3 and 5-4 for comparison. The agreement is fairly good as
demonstrated. In Figs. 5-3 and 5-4, the plots for the relative errors between evaluated
results and simulated results are also given. It can be seen that the maximum relative
errors are respectively 5.4%, 3.0%, 13.9% and 3.1% for Figs. 5-3 (a), 5-3 (b), 5-4 (a) and
5-4 (b). Through our investigation, it is found that the maximum error occurs when the
bent angle of the ground plane & is around 45°, as displayed in Fig. 5-5 for the H plane
configuration. This is because in our approximate formula, the distance is decomposed
into horizontal and vertical components as independent variables. From error synthesis,
the maximum error occurs when contributions of all the components can match each
other. When #=45° the bent part of the ground plane is decomposed into two equal
horizontal and vertical components. As seen in Fig. 5-1, the distance s is much smaller
than the length of bent part of ground plane, which makes the latter to be the major factor

affecting the mutual coupling. So, the maximum error occurs when @ is around 45°.

Another factor to affect the mutual coupling is the size of the ground plane. Generally,
the mutual coupling between the two plates with a smaller ground plane is stronger than
that with a larger ground plane when all the other factors remain the same. This
observation is confirmed in our investigations. There are two ways to change the size of
the ground plane. One is to change the dimensions of the ground plane directly, while the
other is to vary the sizes of the plates, which results in different resonant frequencies and
different “relative” sizes of the ground plane. In our investigations, a finite-size ground

plane at a resonant frequency around 1.9 GHz is considered. So, this idea can be directly
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used in the practical design of SPAs with the inclined ground plane of similar relative

size. If the ground plane size changes considerably, the coefficients of polynomials D(d )

and H (h) in (5.3~5.6) should be modified by the interpolation with new simulation

results. As indicated earlier, the procedure of Newton and Chebyshev interpolation is

included in the Appendix.
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Fig. 5-5 Coupling coefficient as a function of ground plane bent angle for H plane
coupled square plates with an inclined ground plane: f, =1.9GHz, a =b=70 mm,

Nd* +h* =0.511, and s =0.051 .

5.3 Conclusions

In this chapter, a study on the mutual coupling between two square SPAs with an

inclined ground plane has been presented. The interpolation formulae have been obtained

and used to evaluate the coupling coefficients for £ and H plane coupled square plates.

5.4 Appendix

In this appendix, a brief description of Newton interpolation and Chebyshev interpolation
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is given.
5.4.1 Newton’s Divided Difference Interpolation [5.11]

ALGORITHM INTERPOL (x,,,X,; fy, - f,3%)
This algorithm computes an approximation p, (x) of f(x) at x.
INPUT: Data (x,, £, ), (x,, £, b= (x,, £, )3
OUTPUT: Approximation p, (x) of £(x).
Set fTx,1=f,(j=0,:.n).
For m=1,---,n—1 do:

For j=0,---,n—m do:

]: fl_xj+1a""xj+mJ_fl_xja"'axj+m—1J

Kjem = X;

f[xj’“.’xj+m
End
End
Set py(x)= 1,
For k=1,---,n do:
Pi(x)= py(0)+ (o= ) (e = )f g ]
End

OUTPUT p, (x)

End INTERPOL
For equal-spacing Newton Interpolation, we havex—x, =rh, x—x, = (r - l)h , etc.

The error is given by
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n+l

(n + 1).

g,(x)=f(x)-p,(x)= r(r=1)-(r=n) "V £ ). (A.D)

5.4.2 Chebyshev Interpolation
This algorithm computes an approximation p, (x) of f(x) within[a,b].

i) The first procedure is to compute the =zero points of

- 2x—b—
Preil)=1, (25000 )

b+a b-a 2k +1
= cos

X, = + T k=0,1--,n A2
o2 2 2(n+1) ( ) (A-2)

where T, (x) is a Chebyshev Polynomial of order 7.
i1)) And the second step is to employ (xk, fk) in (A.2) as given data to get
interpolation polynomial p, (x) .

The error estimate for Chebyshev Interpolation is given by

F(g) ;,,H(x) L M,, (b-a)"
UERYV A

(A.3)
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Chapter 6 Conclusions and Recommendations

6.1 Conclusions of the Thesis

In this thesis, an integral-equation-formulation approach, in conjunction with method
of moments (MoM), has been employed in modelling three periodic structures and
analyzing their scattering or radiation properties. Integral equations enforced by boundary
conditions have been derived in the spatial domain, expressed in terms of the electric
fields developed on the conducting surfaces and the magnetic fields developed across the
apertures, respectively. These fields were calculated using periodic and cavity Green’s
functions, and the needed components were derived and given in the relevant chapters.
The integral equations were solved via the MoM technique. In particular, an entire-
domain Galerkin’s technique was employed and proved very efficient, when rather
specific geometries were considered and appropriate “intelligent” basis functions were
chosen, accelerating the convergence of the method. To prove this claim, three useful
periodic structures, a thick perforated plate, an infinite probe-excited cavity-backed
aperture array, and an infinite planar dipole array with a periodically excavated ground

plane, have been solved in the above approach.

As far as the thick perforated plate case is concerned, the scattering from a periodically
perforated conducting plate has been examined in Chapter 2. PEC cavities were
employed to model the perforated regions, and entire-domain Galerkin’s technique was
used to discretize the field integral equations for the equivalent magnetic currents

representing a doubly periodic rectangular aperture array, where the basis and testing
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functions were Chebyshev polynomials and their associated weights. The use of
Chebyshev-type basis functions in describing the unknown electric and equivalent
magnetic currents, proved very effective, was definitely preferable to the use of Fourier-
exponential basis functions. The calculated results were compared with experimental data
and the numerical data from previous accurate methods. To study the effects of geometry
parameters on the scattering properties, transmission coefficient versus differing screen
thickness, aperture dimensions, and incident waves were shown and discussed. The
scattering from a periodically perforated conducting plate has many significant practical
applications. A thick perforated plate has exhibited a steeper cutoff between the stop and
the passband frequency, which is important in the design of metallic mesh filters or
fenestrated radomes. The thick screen can also be used in the problems associated with

the radiation hazards due to leakage through reflective surfaces on low-noise antennas.

Cavity-backed aperture or slot array was noticed to have many attractive features, such
as low profile and high efficiency, but in literatures it has not been found any full wave
method to model this kind of infinite array accurately and completely. Given this
consideration, in Chapter 3, an entire-domain Galerkin’s procedure was presented for the
accurate and efficient modelling of infinite probe-excited and cavity-backed aperture
array, based on the spatial domain cavity Green’s function and periodic Green’s function.
Entire-domain Galerkin’s expansions have been employed together with several algebraic
manipulations in computing the integrals involved, which helped us get the analytical
results of the matrix form, avoided the Fourier transformation in spectral-domain

methods, and had a positive effect on the accuracy of the proposed technique. The effects
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of cavity depth, aperture size, and periodicity for the infinite probe-excited cavity-backed

aperture array were also discussed and given out.

As another representative example of the radiation problems of periodic structures
combining cavity and array properties, the infinite planar dipole array with a periodically
excavated ground plane has been modelled in Chapter 4. Two cases were treated
separately for this kind of array, due to the different modelling procedures and field
calculation methods. One case is the dipole array above a ground plane with periodically
arranged concave rectangular cavities, and the other case is the dipole array “embedded”
in a ground plane with periodically arranged concave rectangular cavities. To verify the
proposed approach, the radiation impedance results have been compared with those data
available in literatures for some ultimate geometry cases, and a good agreement was
found. The proposed model can be easily generalized to the perforated ground plane case
by adding an integral equation representing the boundary condition across the lower

apertures, as that in Chapter 2.

In Chapter 1, some basic theories and popular acceleration methods of periodic and
cavity Green’s functions have been introduced. The periodic Green’s function is from the
three-dimensional Maxwell’s equations defined on a doubly periodic domain with
interfaces between two media with differing dielectric constants. A direct form of
periodic Green’s function was obtained from the superposition of fundamental solutions
to the Helmholtz equation modified by an appropriate phase factor which considered the

pseudo-periodic boundary conditions. With help of Poisson summation formula, the
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direct form of periodic Green’s function was transferred to a form converging fast and
convenient for the analytical integration and differentiation. Several other popular
acceleration methods for periodic Green’s functions, including Kummer’s transformation,
Shanks’ transformation, and Ewald’s method, were briefly introduced respectively. As
for the cavity Green’s function, a dyadic form based on modal expansion was given out,
from which any components useful in certain problems can be derived. The advantage of
this type of cavity Green’s function is easy for analytical integral and differential
calculations, which is preferably needed for entire-domain Galerkin’s method. Another
type of cavity Green’s function based on image expansion and its acceleration method

were also described briefly.

The modelling method combining periodic and cavity Green’s functions and entire-
domain Galerkin’s technique was conducted in the spatial domain instead of the spectral
domain in most existing literatures, and thus leads to a solution in the spatial domain,
avoids the Fourier and inverse Fourier transformations of spectral domain methods. The
“intelligent” entire-domain basis functions were chosen suitable for mathematical
manipulations to obtain analytical results of the matrix elements when performing the
Galerkin’s procedure. The computational time is moderate as compared with the existing

full wave solutions which are relatively time consuming.

In Chapter 5, a study has been performed on the mutual coupling properties of two

suspended plate antennas (SPAs) with an inclined ground plane. Suspended plate

antennas without surface waves have been widely applied in broadband applications, and
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sometimes they are installed on an inclined ground plane. The full-wave theoretical
computations are often time-consuming, so an asymptotic formula was developed to
approximately evaluate the mutual coupling between the square SPAs with an inclined
ground plane. Newton and Chebyshev interpolations were combined with simulation data
from commercial EM computation software to determine the polynomial coefficients.
Several SPAs with inclined ground plane and planar plane were manufactured and the
experiments were set up for studying their properties and verifying the calculated results

by simulation and the proposed approximate formulae.

6.2 Recommendations for Future Research

Future study in the EM modelling for periodic structures combining periodic Green’s
function and cavity Green’s function can be done in the following three major directions:
1) Further accelerating the convergence of both periodic Green’s function and cavity
Green’s function using Ewald’s method or other mathematical transformations. Ewald’s
method has been proved to be able to accelerate both 2D periodic Green’s function and
cavity Green’s function and get the exponential convergence [6.1] — [6.2]. So far, most of
the existing literatures have just shown the procedures to use this method in some basic
forms of periodic and cavity Green’s function calculations, but no literature has been
found to apply it in a structure combining these two kinds of Green’s functions, such as
the infinite thick periodically perforated PEC plate, the probe-excited cavity-backed
aperture array, and the infinite planar dipole array with a periodically excavated ground

plane, and so on.
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2) Applying the modelling approach to more different kinds of periodic structures in
various scattering and radiation problems. For example, a microstrip patch array with
each element residing in a cavity has been reported to have an attractive advantage to use
thicker substrates without the limitation in the scanning range [6.3]. To analyze this
structure, simple approaches become inefficient and full-wave analyses are required. The
method presented in this thesis can be modified to model such an important array. On the
other hand, the rectangular cavities used in the above structures can be replaced by
cylindrical ones, and a procedure similar to what has been presented in this thesis can be
employed to model these new structures. Here, a different form of basis functions should
be considered to achieve the closed-form results.

3) Coupling between two antennas/elements in a geometry background similar to what
has been discussed in this thesis. For example, suppose we have an infinite ground plane
with double periodically excavated cavities, the coupling between one antenna inside a
cavity and another antenna above the ground plane can be computed accurately based on

the model presented in the previous chapters.
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