48 research outputs found

    An Ab Initio Description of the Mott Metal-Insulator Transition of M2_{2} Vanadium Dioxide

    Full text link
    Using an \textit{ab initio} approach based on the GW approximation which includes strong local \textbf{k}-space correlations, the Metal-Insulator Transition of M2_2 vanadium dioxide is broken down into its component parts and investigated. Similarly to the M1_{1} structure, the Peierls pairing of the M2_{2} structure results in bonding-antibonding splitting which stabilizes states in which the majority of the charge density resides on the Peierls chain. This is insufficient to drop all of the bonding states into the lower Hubbard band however. An antiferroelectric distortion on the neighboring vanadium chain is required to reduce the repulsion felt by the Peierls bonding states by increasing the distances between the vanadium and apical oxygen atoms, lowering the potential overlap thus reducing the charge density accumulation and thereby the electronic repulsion. The antibonding states are simultaneously pushed into the upper Hubbard band. The data indicate that sufficiently modified GW calculations are able to describe the interplay of the atomic and electronic structures occurring in Mott metal-insulator transitions.Comment: 10 Pages, 7 Figure

    Age-dependent differential regulation of anxiety- and depression-related behaviors by neurabin and spinophilin

    No full text
    © 2017 Wu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Affective disorders impact nearly 10% of the adult population in the United States in a given year. Synaptic dysfunction has recently emerged as a key neurobiological mechanism underlying affective disorders such as anxiety and depression. In this study, we investigate the potential role of two synaptic scaffolding proteins, neurabin and spinophilin, in regulating anxiety- and depression-related behaviors at different ages using genetically deficient mice. Loss of the neurabin gene reduces anxiety-like behavior in the elevated zero maze in young adult mice (3–5 months old), but not in middle aged mice (11–13 months old), whereas loss of spinophilin decreases anxiety in middle-aged mice, but not in young adult mice. Neurabin knockout (KO) mice also show reduced immobility in the repeated force swim test (FST) at 3–5 months, but not 11–3 months, of age, compared to age- and strain-matched wild type (WT) controls. Conversely, spinophilin KO mice display a lower level of this behavioral despair than matched WT controls after repeated FST trials at the middle age (11–13 months) but not the young age (3–5 months). Together, these data indicate that, despite their structural similarities and overlapping function in regulating synaptic cytoskeleton, the two homologs neurabin and spinophilin play important yet distinct roles in the regulation of anxiety- and depression-like behaviors in an age-dependent manner. Our studies provide new insights into the complex neurobiology of affective disorders

    Age-dependent differential regulation of anxiety- and depression-related behaviors by neurabin and spinophilin.

    No full text
    Affective disorders impact nearly 10% of the adult population in the United States in a given year. Synaptic dysfunction has recently emerged as a key neurobiological mechanism underlying affective disorders such as anxiety and depression. In this study, we investigate the potential role of two synaptic scaffolding proteins, neurabin and spinophilin, in regulating anxiety- and depression-related behaviors at different ages using genetically deficient mice. Loss of the neurabin gene reduces anxiety-like behavior in the elevated zero maze in young adult mice (3-5 months old), but not in middle aged mice (11-13 months old), whereas loss of spinophilin decreases anxiety in middle-aged mice, but not in young adult mice. Neurabin knockout (KO) mice also show reduced immobility in the repeated force swim test (FST) at 3-5 months, but not 11-3 months, of age, compared to age- and strain-matched wild type (WT) controls. Conversely, spinophilin KO mice display a lower level of this behavioral despair than matched WT controls after repeated FST trials at the middle age (11-13 months) but not the young age (3-5 months). Together, these data indicate that, despite their structural similarities and overlapping function in regulating synaptic cytoskeleton, the two homologs neurabin and spinophilin play important yet distinct roles in the regulation of anxiety- and depression-like behaviors in an age-dependent manner. Our studies provide new insights into the complex neurobiology of affective disorders

    Present Situation and Research Progress of Comprehensive Utilization of Antimony Tailings and Smelting Slag

    No full text
    The production process of antimony produces a large amount of solid waste, such as waste rock in mining, tailings in the beneficiation, metallurgical slag in the smelting, and so on. At present, most of these solid wastes are currently in storage, and the storage of a large amount of solid wastes is not only harmful to the local ecological environment but also a waste of resources. In view of this situation, this paper will take antimony tailings and metallurgical slag as examples and summarize them according to their different treatment methods. The comprehensive utilization of antimony tailings is mainly recovering metals by beneficiation and metallurgy and using antimony tailings as building materials and underground filling materials, while the comprehensive utilization method of antimony metallurgical slag is mainly the recovery of valuable metals by pyrometallurgy or hydrometallurgy or the stabilization technology. This paper summarizes the advantages and disadvantages of different treatment methods and puts forward the prospect of future research directions for the treatment of different metallurgical slags and tailings

    Characterization of blaKPC-2-Carrying Plasmid pR31-KPC from a Pseudomonas aeruginosa Strain Isolated in China

    No full text
    This work aimed to characterize a 29-kb blaKPC-2-carrying plasmid, pR31-KPC, from a multidrug resistant strain of Pseudomonas aeruginosa isolated from the sputum of an elderly patient with multiple chronic conditions in China. The backbone of pR31-KPC is closely related to four other blaKPC-2-carrying plasmids, YLH6_p3, p1011-KPC2, p14057A, and pP23-KPC, none of which have been assigned to any of the known incompatibility groups. Two accessory modules, the IS26-blaKPC-2-IS26 unit and IS26-ΔTn6376-IS26 region, separated by a 5.9-kb backbone region, were identified in pR31-KPC, which was also shown to carry the unique resistance marker blaKPC-2. A comparative study of the above five plasmids showed that p1011-KPC2 may be the most complete plasmid of this group to be reported, while pR31-KPC is the smallest plasmid having lost most of its conjugative region. Regions between the iterons and orf207 in the backbone may be hot spots for the acquisition of exogenous resistance entities. The accessory regions of these plasmids have all undergone several biological events when compared with Tn6296. The further transfer of blaKPC-2 in these plasmids may be initiated by either the Tn3 family or IS26-associated transposition or homologous recombination. The data presented here will contribute to a deeper understanding of blaKPC-2 carrying plasmids in Pseudomonas

    Impact of patent foramen ovale on short-term outcomes in children with biliary atresia undergoing living donor liver transplantation: a retrospective cohort study

    No full text
    Abstract Objective To investigate the impact of patent foramen ovale (PFO) on the short-term outcomes of living donor liver transplantation (LDLT) in children with biliary atresia. Methods With the approval of the hospital ethics committee, 304 children with biliary atresia who underwent LDLT in our center from January 2020 to December 2021 were enrolled. According to the results of echocardiography before the operation, the subjects were divided into the PFO group (n = 73) and the NoPFO group (n = 231). The baseline characteristics; intraoperative recipient-related data and donor-related data; incidence of postreperfusion syndrome (PRS); postoperative mechanical ventilation time; ICU stay duration; postoperative hospital stay duration; liver function index; incidences of postoperative complications including acute renal injury (AKI), graft dysfunction, hepatic artery thrombosis (HAT) and portal vein thrombosis (PVT); and one-year survival rate were compared between the two groups. Results The median age in the PFO group was 6 months and that in the NoPFO group was 9 months (P < 0.001), and the median height (65 cm) and weight (6.5 kg) in the PFO group were significantly lower than those in the NoPFO group (68 cm, 8.0 kg) (P < 0.001). The preoperative total bilirubin level (247 vs. 202 umol/L, P = 0.007) and pediatric end-stage liver disease (PELD) score (21 vs. 16, P = 0.001) in the PFO group were higher than those in the NoPFO group. There were no significant differences in the intraoperative PRS incidence (46.6% vs. 42.4%, P = 0.533 ), postoperative mechanical ventilation time (184 vs. 220 min, P = 0.533), ICU stay duration (3.0 vs. 2.5 d, P = 0.267), postoperative hospital stay duration (22 vs. 21 d, P = 0.138), AKI incidence (19.2% vs. 24.7%, P = 0.333), graft dysfunction incidence (11.0% vs. 12.6%, P = 0.716), HAT incidence (5.5% vs. 4.8%, P = 0.762), PVT incidence (2.7% vs. 2.2%, P = 0.675) or one-year survival rate (94.5% vs. 95.7%, P = 0.929) between the two groups. Conclusion The presence of PFO has no negative impact on short-term outcomes in children with biliary atresia after LDLT

    Comparative study of the effects of phosphatidylcholine rich in DHA and EPA on Alzheimer's disease and the possible mechanisms in CHO-APP/PS1 cells and SAMP8 mice

    No full text
    Metabolic stress induced by a high-fat (HF) diet leads to cognitive dysfunction and aging. In the present study, Chinese hamster ovary cells stably transfected with amyloid precursor protein (APP) and presenilin 1 (PS1) (CHO-APP/PS1 cells) and SAMP8 mice fed with an HF diet were used to study the effects of docosahexaenoic acid (DHA)-enriched phosphatidylcholine (DHA-PC) and eicosapentaenoic acid (EPA)-enriched phosphatidylcholine (EPA-PC) on Alzheimer's disease (AD) and the possible mechanisms involved in these effects. Behavior test results indicated that DHA-PC exerted better effects than EPA-PC on improving memory and cognitive deficiency. Further analysis showed that DHA-PC and EPA-PC could significantly decrease beta-amyloid (A beta) concentrations in CHO-APP/PS1 cells and SAMP8 mice by inhibiting APP, PS1, and BACE1 expression. Moreover, both DHA-PC and EPA-PC can increase the activities of the antioxidant index, including SOD, T-AOC, GSH, and GSH-PX, and inhibit levels of MDA, NO, and NOS. In addition, the expressions of inflammatory factors (TNF-alpha IL-1 beta) and apoptosis were significantly suppressed via improving the ratio of Bcl-2/Bax and decreasing the expression of pro-apoptosis factors. Interestingly, only DHA-PC could improve the expression of neurotrophic factors, including BDNF, synaptophysin, and growth associated protein 43. DHA-PC and EPA-PC could ameliorate memory and cognitive function of HF diet-fed SAMP8 mice via inhibiting A beta generation, suppressing oxidative stress and apoptosis, down-regulating inflammatory response, and improving neurotrophic activity. Therefore, DHA-PC and EPA-PC may be applied as food supplements and/or functional ingredients to relieve neurodegenerative disease

    What are the Advantages? A Prospective Analysis of 16 versus 28 French Chest Tube Sizes in Video-assisted Thoracoscopic Surgery Lobectomy of Lung Cancer

    No full text
    Background and objective Post-operation management of minimally invasive thoracic surgery is similar to that of open surgery, especially on the drainage tube of the chest. The aim of this study is to compare the advantages of using 16 F versus 28 F chest tubes in video-assisted thoracoscopic surgery (VATS) lobectomy of lung cancer. Methods Data from 163 patients (February-May 2014) who underwent VATS lobectomy of lung cancer with insertion of one chest drain (16 F or 28 F) were analyzed. The following post-operative data were evaluated: primary healing of tube incision, CXR abnormalities (pneumothorax, fluid, atelectasis, subcutaneous emphysema, and hematoma), drainage time, new drain insertion, and wound healing at the site of insertion. Results A total of 75 patients received 28 F chest tubes, and 88 patients received 16 F chest tubes. Both groups were similar in age, gender, comorbidities, and pathological evaluation of resection specimens. After adjustment, no statistically significant difference was found between the two groups in relation to tube-related complications including residual pneumothoraces (4.00% vs 4.44%; P=0.999), subcutaneous emphysema (8.00% vs 6.67%; P=0.789), retained hemothorax (0 vs 41%, P=0.253), and drainage time [(28.4±16.12) h vs (22.1±11.8) h; P=0.120)] The average total drainage volume and rrhythmia rates of the 16 F group [(365±106) mL, 14.67%)] was less than that of the 28 F group [(665±217) mL, 4.5%; P=0.030, P=0.047]. The rates of primary healing at the site of insertion in the 16 F group (95.45%) was higher than that in the 28 F group (77.73%, P=0.039). A significant difference was found on the post-operative length of stay of the two groups [(4.23±0.05) d vs (4.57±0.16) d, P=0.078]. Conclusion The use of 16 F chest tube for VATS lobectomy of patients with lung cancer did not affect the clinically relevant outcomes tested. However, 16 F chest tube facilitated faster wound healing at the site of insertion
    corecore