6 research outputs found

    The effects of disorder and interactions on the Anderson transition in doped Graphene

    Full text link
    We undertake an exact numerical study of the effects of disorder on the Anderson localization of electronic states in graphene. Analyzing the scaling behaviors of inverse participation ratio and geometrically averaged density of states, we find that Anderson metal-insulator transition can be introduced by the presence of quenched random disorder. In contrast with the conventional picture of localization, four mobility edges can be observed for the honeycomb lattice with specific disorder strength and impurity concentration. Considering the screening effects of interactions on disorder potentials, the experimental findings of the scale enlarges of puddles can be explained by reviewing the effects of both interactions and disorder.Comment: 7 pages, 7 figure

    Observation of spin-orbit magnetoresistance in metallic thin films on magnetic insulators

    Full text link
    A magnetoresistance effect induced by the Rashba spin-orbit interaction was predicted, but not yet observed, in bilayers consisting of normal metal and ferromagnetic insulator. Here, we present an experimental observation of this new type of spin-orbit magnetoresistance (SOMR) effect in a bilayer structure Cu[Pt]/Y3Fe5O12 (YIG), where the Cu/YIG interface is decorated with nanosize Pt islands. This new MR is apparently not caused by the bulk spin-orbit interaction because of the negligible spin-orbit interaction in Cu and the discontinuity of the Pt islands. This SOMR disappears when the Pt islands are absent or located away from the Cu/YIG interface, therefore we can unambiguously ascribe it to the Rashba spin-orbit interaction at the interface enhanced by the Pt decoration. The numerical Boltzmann simulations are consistent with the experimental SOMR results in the angular dependence of magnetic field and the Cu thickness dependence. Our finding demonstrates the realization of the spin manipulation by interface engineering.Comment: 12 pages, 4 figures, 14 pages in supplementary. To appear on Science Advance

    6G Near-field Technologies White Paper

    No full text
    No abstract available
    corecore