62 research outputs found
Distributed Active Noise Control System Based on a Block Diffusion FxLMS Algorithm with Bidirectional Communication
Recently, distributed active noise control systems based on diffusion
adaptation have attracted significant research interest due to their balance
between computational complexity and stability compared to conventional
centralized and decentralized adaptation schemes. However, the existing
diffusion FxLMS algorithm employs node-specific adaptation and
neighborhood-wide combination, and assumes that the control filters of neighbor
nodes are similar to each other. This assumption is not true in practical
applications, and it leads to inferior performance to the centralized
controller approach. In contrast, this paper proposes a Block Diffusion FxLMS
algorithm with bidirectional communication, which uses neighborhood-wide
adaptation and node-specific combination to update the control filters.
Simulation results validate that the proposed algorithm converges to the
solution of the centralized controller with reduced computational burden
IR-STP: Enhancing Autonomous Driving with Interaction Reasoning in Spatio-Temporal Planning
Considerable research efforts have been devoted to the development of motion
planning algorithms, which form a cornerstone of the autonomous driving system
(ADS). Nonetheless, acquiring an interactive and secure trajectory for the ADS
remains challenging due to the complex nature of interaction modeling in
planning. Modern planning methods still employ a uniform treatment of
prediction outcomes and solely rely on collision-avoidance strategies, leading
to suboptimal planning performance. To address this limitation, this paper
presents a novel prediction-based interactive planning framework for autonomous
driving. Our method incorporates interaction reasoning into spatio-temporal
(s-t) planning by defining interaction conditions and constraints.
Specifically, it records and continually updates interaction relations for each
planned state throughout the forward search. We assess the performance of our
approach alongside state-of-the-art methods in the CommonRoad environment. Our
experiments include a total of 232 scenarios, with variations in the accuracy
of prediction outcomes, modality, and degrees of planner aggressiveness. The
experimental findings demonstrate the effectiveness and robustness of our
method. It leads to a reduction of collision times by approximately 17.6% in
3-modal scenarios, along with improvements of nearly 7.6% in distance
completeness and 31.7% in the fail rate in single-modal scenarios. For the
community's reference, our code is accessible at
https://github.com/ChenYingbing/IR-STP-Planner.Comment: 12 pages, 10 figures, accepted by IEEE-TITS at this Januar
Physiological function of nerve injury-induced protein 1 and its role in relevant diseases
Nerve injury-induced protein 1 (NINJ1) is a cell-surface adhesion molecule containing an extracellular adhesion domain and two transmembrane domains. NINJ1 is named for its original discovery in damaged nerve endings. It is expressed in a variety of tissues and cells, with high expression in epithelial and myeloid cells. NINJ1 regulates nerve regeneration by promoting Schwann cell precursors and pluripotent pericytes to differentiate into Schwann cells. In diabetes-induced peripheral nerve and vascular damage, NINJ1 not only promotes nerve repair, but also regulates penile angiogenesis via angiopoietin 1 (ANG1)/tyrosine-protein kinase receptor tie-2 (TIE2) signaling pathway. NINJ1 also participates in the maturation of vitreous vascular network, which is associated with changes in the proportion of ANG1 and ANG2 in pericytes. NINJ1 mediates inflammatory cell migration across the endothelium through its extracellular adhesion domain, and thus aggravates central nervous system inflammation. However, NINJ1 cleaved by matrix metalloproteinase 9 (MMP9) can inhibit macrophage inflammatory activation, and its mimic peptide is expected to treat atherosclerosis. In addition to regulating the inflammatory phenotypes of myeloid cells, NINJ1 actively mediates plasma membrane rupture and regulates programmed cell death, which is involved in host defense against exogenous infection. Moreover, NINJ1 is up-regulated in a variety of tumor tissues, and regulates tumor suppressor P53 activity via the P53-NINJ1 loop, which mediates tumor growth and metastasis. The current review summarizes the physiological function of NINJ1 and its key regulatory roles in pathological processes, and discusses its potential value in immunomodulation and tissue regeneration, in order to provide new ideas for the prevention and treatment of injury, inflammation and tumor-related diseases
The consistency of invasive and non-invasive arterial blood pressure for the assessment of dynamic cerebral autoregulation in NICU patients
BackgroundStudies of the clinical application of dynamic cerebral autoregulation show considerable variations, and differences in blood pressure devices may be one of the reasons for this variation. Few studies have examined the consistency of invasive and non-invasive arterial blood pressure for evaluating cerebral autoregulation. We attempted to investigate the agreement between invasive and non-invasive blood pressure methods in the assessment of dynamic cerebral autoregulation with transfer function analysis.MethodsContinuous cerebral blood flow velocity and continuous invasive and non-invasive arterial blood pressure were simultaneously recorded for 15 min. Transfer function analysis was applied to derive the phase shift, gain and coherence function at all frequency bands from the first 5, 10, and 15 min of the 15-min recordings. The consistency was assessed with Bland–Altman analysis and intraclass correlation coefficient.ResultsThe consistency of invasive and noninvasive blood pressure methods for the assessment of dynamic cerebral autoregulation was poor at 5 min, slightly improved at 10 min, and good at 15 min. The values of the phase shift at the low-frequency band measured by the non-invasive device were higher than those measured with invasive equipment. The coherence function values measured by the invasive technique were higher than the values derived from the non-invasive method.ConclusionBoth invasive and non-invasive arterial blood pressure methods have good agreement in evaluating dynamic cerebral autoregulation when the recording duration reaches 15 min. The phase shift values measured with non-invasive techniques are higher than those measured with invasive devices. We recommend selecting the most appropriate blood pressure device to measure cerebral autoregulation based on the disease, purpose, and design
SARS-CoV-2 Nucleocapsid Protein Has DNA-Melting and Strand-Annealing Activities With Different Properties From SARS-CoV-2 Nsp13
Since December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread throughout the world and has had a devastating impact on health and economy. The biochemical characterization of SARS-CoV-2 proteins is important for drug design and development. In this study, we discovered that the SARS-CoV-2 nucleocapsid protein can melt double-stranded DNA (dsDNA) in the 5′-3′ direction, similar to SARS-CoV-2 nonstructural protein 13. However, the unwinding activity of SARS-CoV-2 nucleocapsid protein was found to be more than 22 times weaker than that of SARS-CoV-2 nonstructural protein 13, and the melting process was independent of nucleoside triphosphates and Mg2+. Interestingly, at low concentrations, the SARS-CoV-2 nucleocapsid protein exhibited a stronger annealing activity than SARS-CoV-2 nonstructural protein 13; however, at high concentrations, it promoted the melting of dsDNA. These findings have deepened our understanding of the SARS-CoV-2 nucleocapsid protein and will help provide novel insights into antiviral drug development
Genome-Wide Association Study of Lung Adenocarcinoma in East Asia and Comparison With a European Population
Lung adenocarcinoma is the most common type of lung cancer. Known risk variants explain only a small fraction of lung adenocarcinoma heritability. Here, we conducted a two-stage genome-wide association study of lung adenocarcinoma of East Asian ancestry (21,658 cases and 150,676 controls; 54.5% never-smokers) and identified 12 novel susceptibility variants, bringing the total number to 28 at 25 independent loci. Transcriptome-wide association analyses together with colocalization studies using a Taiwanese lung expression quantitative trait loci dataset (n = 115) identified novel candidate genes, including FADS1 at 11q12 and ELF5 at 11p13. In a multi-ancestry meta-analysis of East Asian and European studies, four loci were identified at 2p11, 4q32, 16q23, and 18q12. At the same time, most of our findings in East Asian populations showed no evidence of association in European populations. In our studies drawn from East Asian populations, a polygenic risk score based on the 25 loci had a stronger association in never-smokers vs. individuals with a history of smoking (Pinteraction = 0.0058). These findings provide new insights into the etiology of lung adenocarcinoma in individuals from East Asian populations, which could be important in developing translational applications
Genome-wide association study of lung adenocarcinoma in East Asia and comparison with a European population.
Lung adenocarcinoma is the most common type of lung cancer. Known risk variants explain only a small fraction of lung adenocarcinoma heritability. Here, we conducted a two-stage genome-wide association study of lung adenocarcinoma of East Asian ancestry (21,658 cases and 150,676 controls; 54.5% never-smokers) and identified 12 novel susceptibility variants, bringing the total number to 28 at 25 independent loci. Transcriptome-wide association analyses together with colocalization studies using a Taiwanese lung expression quantitative trait loci dataset (n = 115) identified novel candidate genes, including FADS1 at 11q12 and ELF5 at 11p13. In a multi-ancestry meta-analysis of East Asian and European studies, four loci were identified at 2p11, 4q32, 16q23, and 18q12. At the same time, most of our findings in East Asian populations showed no evidence of association in European populations. In our studies drawn from East Asian populations, a polygenic risk score based on the 25 loci had a stronger association in never-smokers vs. individuals with a history of smoking (Pinteraction = 0.0058). These findings provide new insights into the etiology of lung adenocarcinoma in individuals from East Asian populations, which could be important in developing translational applications
Genome-wide association study of lung adenocarcinoma in East Asia and comparison with a European population
Lung adenocarcinoma is the most common type of lung cancer. Known risk variants explain only a small fraction of lung adenocarcinoma heritability. Here, we conducted a two-stage genome-wide association study of lung adenocarcinoma of East Asian ancestry (21,658 cases and 150,676 controls; 54.5% never-smokers) and identified 12 novel susceptibility variants, bringing the total number to 28 at 25 independent loci. Transcriptome-wide association analyses together with colocalization studies using a Taiwanese lung expression quantitative trait loci dataset (n = 115) identified novel candidate genes, including FADS1 at 11q12 and ELF5 at 11p13. In a multi-ancestry meta-analysis of East Asian and European studies, four loci were identified at 2p11, 4q32, 16q23, and 18q12. At the same time, most of our findings in East Asian populations showed no evidence of association in European populations. In our studies drawn from East Asian populations, a polygenic risk score based on the 25 loci had a stronger association in never-smokers vs. individuals with a history of smoking (P interaction = 0.0058). These findings provide new insights into the etiology of lung adenocarcinoma in individuals from East Asian populations, which could be important in developing translational applications
- …