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In recent years, the rapid evolution of autonomous vehi-
cles (AVs) has reshaped global transportation systems, 
leading to an increase in autonomous shuttle applica-
tions in people’s daily lives. Leveraging the accomplish-
ments of our earlier endeavor, particularly Hercules [1], 
an autonomous logistics vehicle for transporting goods, 
we introduce Snow Lion, an autonomous shuttle vehicle 
specifically designed to transform on-campus transporta-
tion, providing a safe and efficient mobility solution for 
students, faculty, and visitors.

Although similar research on autonomous shuttles has 
been presented by [2], [3], and [4], these studies primarily 
concentrate on consumer-level data collection and analysis 
[2], the social implications and governance challenges of 
autonomous shuttle services [3], and pedestrian behavior 
prediction [4], differing in focus from this work. In addi-
tion, this study presents outcomes that differ from our 
previous work [1] as the campus environment contrasts 
notably with the structured environments of highways and 
urban streets. Instead of employing a direct perception-to-
planning framework [5], [6], we deploy a pipeline frame-
work for the whole navigation system of the AV as it offers 

higher traceability of final planning performance, espe-
cially when encountering bugs or unexpected deviations 
during practical implementations. Additionally, it discuss-
es supplementary devices and functionalities to enhance 
the AV’s security, including warning systems for inatten-
tive pedestrians.

Overall, this research (the project website: https://cheny 
ingbing.github.io/xueshi_campus_av/) aims to enhance 
campus mobility by developing a reliable, efficient, and 
environmentally friendly autonomous transportation solu-
tion tailored to meet the diverse requirements of a univer-
sity setting. It introduces a prototype autonomous driving 
system tailored for unstructured environments and delves 
into the system and algorithmic architecture, as well as the 
real-world challenges encountered during its development 
and implementation phases. As depicted in Figure 1, our 
experiments encompassed a 1,146-kilometer road haul and 
the transportation of 442 passengers over a two-month peri-
od. They provide valuable insights into the intricate process 
of integrating an AV within campus shuttle operations. Fur-
thermore, a thorough analysis of the lessons derived from 
this experience furnishes a valuable real-world case study, 
along with recommendations for future research and devel-
opment in the field of autonomous driving.Digital Object Identifier 10.1109/MRA.2024.3433168
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SYSTEM INTRODUCTION
As shown in Figure 2, we initially present an overview of the 
modules and their interconnections within our autonomous 
shuttle. Furthermore, we explore the contextual functions and 
onboard sensors and elucidate their operational pipelines.

SENSORS AND DEVICES
The autonomous shuttle, from a hardware perspective, boasts 
dimensions of , , ,4 350 1 630 2 280# #  mm3  and has the 
capacity to carry up to six passengers, with a maximum load 
capacity of 560 kilograms. The vehicle achieves a maximum 
driving speed of 15 km/h and is equipped with a navigation 
system that seamlessly integrates multisensor fusion for per-
ception data, enabling circumstance map construction and 
localization functions. The platform houses an industrial per-
sonal computer (IPC) equipped with an Intel i7-8700 CPU 
(six cores and 12 threads) and 32 GB of memory, along with 
a 1050Ti NVIDIA graphics card. The vehicle is furnished 
with a removable 74-V lithium-ion battery that provides 
power to the chassis, IPC, sensors, and accessories, enabling 
the vehicle to operate autonomously for 24 h. Additionally, 
four 16-beam lidar units (HESAI XT16) are present: three 
are positioned at the front and sides to enhance the detection 
of surrounding obstacles, while one is installed on the roof 
primarily for localization purposes. The system also includes 
four fish-eye cameras utilized by Open Broadcaster Software 
(OBS) to record video data during operation, an inertial mea-
surement unit,  and a high-precision global navigation satellite 
system (GNSS) providing real-time kinematic capabilities, as 
well as latitude and longitude position-
ing information for the AV. Finally, we 
have a 4G/5G data transfer unit (DTU), 
six seat-side buttons, a sound player, 
and a rear LED screen at our disposal 
to bolster autonomous navigation. The 
DTU facilitates the connection of the 
IPC to our cloud management platform 
over the Internet, allowing for the initi-
ation or suspension of navigation tasks 
via a mobile application. Additionally, 
seat-side buttons provide supplementa-
ry interaction opportunities for passen-
gers on board during navigation. The 
sound player serves the dual purpose 
of broadcasting the vehicle’s status 
and attracting the attention of nearby 
pedestrians who may be inattentive. 
Meanwhile, the LED screen is used for 
display purposes.

FUNCTIONS
The functionalities of the entire 
autonomous navigation system can 
be categorized into three primary 
components: autonomous naviga-
tion, task scheduling, and various 

auxiliary modules, including map editing and sound 
broadcasting.

Tasks related to autonomous navigation primarily occur 
within the onboard IPC, involving perception, localization, 
and planning functions. The perception task interprets point 
cloud data from lidars, extracting geometric characteristics 
and velocity details of nearby entities. In contrast, the local-
ization module employs these data for robot positioning and 
map creation. Once the shapes and speeds of other entities 
are acquired, their trajectories are estimated using a constant 
velocity model. These details, along with localization data, are 
then transmitted to the planning module to calculate a feasible 
trajectory for the AV along the given global route. Simultane-
ously, the planning module sends commands to the onboard 
sound system to enhance other road users’ comprehension 
of the AV’s movements. Ultimately, the controller tracks the 
obtained trajectory and generates a control command for the 
chassis to execute.

At a remote operational level, two primary tools, the mobile 
device interface and the web-based interface, are utilized for 
querying status, recording data, and issuing commands to the 
autonomous shuttle. Both interfaces offer comparable func-
tions to users, harnessing identical data and services sourced 
from the cloud. The scheduling server handles task assign-
ments and collects the status of all registered running vehicles. 
It also performs various functions such as accessing map data 
for routing, transmitting sensor data to the map server, record-
ing key information in the log server, and providing data replay 
functionality for traceability. From Figure 2, it is evident that 
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FIGURE 1. (a) The operational scenario of our autonomous shuttle during its service  
period at the Hong Kong University of Science and Technology (Guangzhou) [HKUST 
(GZ)]. The red lines represent the operational road map of the campus, with shuttle  
stations depicted as boxes (e.g., C1 and 1B). (b) Multiple images captured during the 
operation of the autonomous shuttle. 

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University College London. Downloaded on August 28,2024 at 11:09:24 UTC from IEEE Xplore.  Restrictions apply. 



IEEE ROBOTICS & AUTOMATION MAGAZINE     4

for task scheduling, three methods are available for assigning 
tasks to unmanned vehicles. First, developers can communi-
cate with the scheduling server through web sockets. Second, 
during actual operations, users can utilize private smartphone 
applications to confirm their desired stops. Last, passengers 
can also indicate their intent to disembark by pressing an 
onboard button, prompting the scheduling module to arrange 
their exit at an appropriate location.

PERCEPTION AND LOCALIZATION
The lidar sensors collect point cloud data used in the per-
ception and localization tasks of AVs. These functions are 
fundamental to the core of autonomous navigation. The 
perception function processes sensor data to comprehend 
the surrounding environment, while the localization func-
tion constructs environmental maps and provides location 
information.

MULTIPLE LIDAR-BASED 3D OBJECT DETECTION
The 3D perception module empowers the AV to detect and 
precisely locate vital objects, including automobiles, pedes-
trians, and cyclists, in 3D space via sensor data. The 3D 
object detection strives to both recognize and categorize 
objects while also estimating their positions and velocities 
relative to a designated coordinate system. Geometric data 
acquired by lidar sensors play a crucial role in perception as 
precise spatial information greatly enhances the accuracy of 
3D object localization.

MULTILIDAR CALIBRATION
Multiple lidar sensors are used for object detection. The initial 
step involves calibrating the lidar sensors. In this study, we 
use our marker-based automatic calibration approach [8] that 
eliminates the need for extra sensors and human involvement. 
In this approach, it is assumed that three linearly independent 
planar surfaces, arranged in a wall corner configuration, serve 
as calibration targets, ensuring that the geometric constraints 
are adequate for calibrating each pair of lidar sensors. Fol-
lowing the matching of corresponding planar surfaces, our 
approach effectively retrieves the unknown extrinsic param-
eters in two stages: initial estimation utilizing the closed-form 
Kabsch algorithm and subsequent refinement through plane-
to-plane iterative closest point (ICP).

OBJECT DETECTION
An illustration of our 3D object detection method is provided 
in Figure 3. The VoxelNet approach [7] is employed to process 
multiple point clouds captured by multilidar sensors as inputs. 
During the input stage, an early-fusion scheme is utilized to 
combine data from multiple calibrated lidar sensors. Assum-
ing that the lidar sensors are synchronized, we align all the 
raw point clouds to a common base frame before passing the 
fused point clouds to the 3D object detector. Then, based on 
the given point cloud, we partition the 3D space into equidis-
tantly spaced voxels. The point cloud information undergoes a 
systematic processing procedure, which commences with the 
mapping of raw point cloud data onto a 3D voxel grid. The 
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FIGURE 2. The functions and connections of the whole system of the AV. GNSS: global navigation satellite system; IMU: inertial  
measurement unit; IPC: industrial personal computer; OBS: Open Broadcaster Software. 
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voxelization step accomplishes two goals: it discretizes the 
continuous point cloud for computational manageability and 
addresses the issue of nonuniform point cloud distribution 
across voxels. For additional computational efficiency optimi-
zation, we employ a random subsampling strategy within each 
voxel, guaranteeing the capture of a representative data subset, 
thus mitigating the computational overhead linked to process-
ing the complete voxel point cloud.

The following stage, known as the voxel feature encoding 
(VFE) layer, plays a crucial role in aggregating the key fea-
tures of individual points within a voxel. The feature represen-
tation resulting from the VFE layer encapsulates the overall 
characteristics of the voxel. Additionally, the feature vectors in 
the vertical (z) direction are concatenated, effectively creating 
a bird’s-eye view of the current scene. This transformed repre-
sentation is subsequently utilized for subsequent classification 
and regression tasks.

At the feature point level, the region proposal network (RPN) 
header is crucial in predicting offset values for a specific set of 
anchors. These offsets consist of eight values, including center 
coordinates, 3D bounding box dimen-
sions, orientation, and velocity. To 
enhance and optimize predictions while 
reducing redundancy, a nonmaximum 
suppression technique is employed to 
selectively retain predictions with the 
highest confidence scores. The RPN 
also plays a key role in classifying the 
object category associated with the cur-
rent feature point, thereby enhancing 
the model’s ability for comprehensive 
scene understanding. The resulting out-
put comprises a series of 3D bounding 
boxes, each bearing its associated cate-
gory label, and includes their 2D veloc-
ity in the horizontal plane.

THREE-DIMENSIONAL POINT 
CLOUD MAPPING AND 
LOCALIZATION

MAPPING
In unmanned vehicle applications, 
maps play a pivotal role in provid-
ing essential information for the lo-
calization, perception, and planning 
tasks of unmanned vehicles. Among 
various map forms, lidar point cloud 
maps are preferred due to their den-
sity, informativeness, and accuracy. 
Graph-based optimization techniques 
are commonly employed for lidar-
based mapping. Within a construct-
ed pose graph, edges represent 
constraints, while nodes correspond 
to poses. The primary objective of 

pose graph optimization is to minimize the error associated 
with all constraints. LeGO-LOAM [9] is a widely recog-
nized graph optimization method known for its lightweight 
design, ground optimization, back-end enhancements, and 
loop detection mechanism. To further mitigate accumula-
tion errors, we introduce GNSS measurements as a new 
constraint within the graph. The three constraints within 
the graph encompass the odometry constraint derived from 
lidar odometry, the GNSS constraint determined by the 
static transformation between the lidar and GNSS antenna, 
and the loop closure constraint established through the ICP 
algorithm. The optimization problem is addressed using the 
Levenberg–Marquardt (LM) algorithm, chosen for its ef-
fectiveness compared with the Gauss–Newton algorithm, 
owing to the LM algorithm’s establishment of a trust region 
for valid nonlinear approximations. Figure 4 depicts a map 
resulting from the mapping process alongside the corre-
sponding real-world satellite map. The inclusion of GNSS 
measurements as a new constraint significantly enhances the 
accuracy and reliability of the optimized map. Our proposed  

(a) (b)

FIGURE 4. (a) A satellite map of the campus and (b) a constructed point cloud map. 

FIGURE 3. The 3D object detection module overview. Utilizing synchronized and well-
calibrated lidar-captured point clouds, we employ an early-fusion technique to merge 
data from multiple calibrated lidars and apply VoxelNet [7] for 3D object detection using 
the fused results.
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approach holds promise for unmanned vehicle applications 
necessitating highly accurate and dependable maps.

LOCALIZATION
Accurate localization is a critical aspect of navigation and 
control. Our approach to achieve precision localization 
involves fusing lidar observation data with odometry data. To 
relieve the issue of observation data delays, our localization 
system is designed based on the steady-state approximation of 
the extended Kalman filter, as opposed to using a pure EKF. 
Upon acquiring a new frame of lidar data, it is imperative 
to register it with existing map data. In an effort to enhance 
computational efficiency and reduce storage demands, our 
initial step involves downsampling the map created through 
the method described in the section “Mapping.” After acquir-
ing an initial pose estimation using GNSS data, we proceed to 
extract the point cloud within the region of interest from the 
map. Subsequently, we employ the ICP algorithm to calculate 
the precise pose.

PLANNING FRAMEWORK
In a complex campus environment, motion planning for 
an autonomous campus mobility vehicle must address 
diverse interactions, involving pedestrians, bicycles, and 
vehicles, both within and outside traffic-regulated zones. 
These demands necessitate the AV to possess two crucial 
capabilities. First, the AV needs to demonstrate robust 
responses to environmental uncertainties. Second, it must 
ensure motion that is easily understood by other road 
users and comfortable for passengers. Figure 5 illustrates 
our approach, which utilizes a pipeline planner for cam-
pus mobility scenarios.

A NAVIGATION TASK WITH GLOBAL ROUTING
Building upon our prior research [1], [10], when provided with 
the road map data and the AV’s initial position, the naviga-
tion task manager manages destination data for the AV and 
invokes the global routing module to determine the global 
route for autonomous driving. As depicted in Figure 7(a), we 
apply the A* algorithm to perform this function. Additionally, 
our designed task manager utilizes the status of the function 
button to truncate the acquired global route to a temporary 
destination when passengers request an unscheduled drop-off. 
After the AV has come to a halt, it remains stationary for a 
predefined period (typically 8 s) and checks for the absence of 
nearby pedestrians before resuming the initial navigation task.

BEHAVIORAL PLANNING
Utilizing input data from the local map (representing the driv-
able area) and obstacle information, our behavioral planning, 
depicted in Figure 6, computes a local reference route for sub-
sequent motion planning tasks based on scenario tags in the 
road map. The resulting reference route is depicted as a lateral 
deviation dr from the global reference route, using the Frenét 
framework. The goal of this module is to ensure a comfort-
able driving experience and define precise driving constraints 
for diverse scenarios. These scenarios encompass common 
roads, parking lots, and unprotected intersections. We specify 
distinct configurations and constraints for each scenario, sub-
sequently integrating them into the motion planning task to 
ensure safety and stability during vehicle operation.

COMMON SITUATION
In the majority of cases, behavioral planning facilitates lane-
changing maneuvers for AVs, allowing the sampling of lateral 
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FIGURE 7. Examples of routing outcomes and operational photographs. (a) Examples of routing results and the local map perspective. 
The red line on the left represents the global route, while the right side displays local environmental representations used in the plan-
ning process. Purple areas signify predefined curb areas. Green areas designate the observation area utilized in behavioral planning 
(see the section “Behavioral Planning”). The yellow block indicates the stop line where the AV yields to dynamic obstacles within the 
intersection. (b) The autonomous shuttle is stationed at the designated stop, awaiting passengers (two are already seated in the rear 
row). Two security guards dressed in blue are present throughout the entire operation to ensure passenger safety in case of accidents 
or emergencies. (c) and (d) Photographs captured during the operation period. (e) A screenshot obtained from the OBS during the 
operation period.
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offsets exceeding a specified threshold value dl. Illustrated in 
Figure 6, in such instances, the lateral offsets of the reference 
route are constrained within the green parts of lateral offsets, 
and a time delay /f1 p  is implemented in the planning loop to 
mitigate the occurrence of serpentine vehicle movements, thus 
ensuring a more comfortable passenger experience.

PARKING LOT
Within parking lot scenarios, the environment becomes notably 
more uncertain due to the possibility of a parked car unexpect-
edly entering the AV’s path. To ensure safe navigation perfor-
mance, we employ both the predicted trajectories of other traffic 
agents and a width inflation operation to enhance driving safety.

UNPROTECTED INTERSECTIONS
During traversal of unprotected intersections, the behavioral 
planner prioritizes the consideration of dynamic obstacles 
within the corresponding observation areas [as depicted in 
Figure 7(a)]. When the AV detects dynamic obstacles within 
these zones, it performs a lane-stop maneuver, halting at a 
predefined stop line if their velocities and anticipated paths 
indicate potential future conflicts. This operation ensures sta-
ble driving performance, especially in intricately unprotected 
intersections, as relying solely on noise-affected trajectory 
predictions for planning purposes are generally inadequate.

This study utilizes the scenario tag of the global route to 
match predefined lateral offset options during the behavioral 
planning stage. Additionally, it determines parameters such 
as the obstacle width inflation volume wo and the maximum 
reference speed vrr . Details of the configuration and con-
straint outputs will be elaborated in the section “Experimental 
Results.” The target reference route is derived by computing 
the cost trajectory among the offset candidates D  as

 ( )argmind J J J Jt
d

s d o dyn
D

= + + +
!

where . ( ) /J w s d s1 0· maxs s m= -^ h promotes the achievement 
of an extended uncollided path distance. Here ( )s dm  represents 
the route distance at offset d, while smax  denotes the maximum 
sample distance. | | | |J w d d w dd d d1 0 2= - +  encourages the 
alignment of the target offset dt with both the route center and 
the AV’s current offset value do. The expression for Jo is given 
as / / ,w c w cmino o1 2avg +  where w(·)  represents the weights, cavg  
denotes the average clearance to obstacles along the refer-
ence route, and cmin  represents the minimum clearance value. 
Additionally, Jdyn  is a cost term that assesses potential col-
lisions with dynamic obstacles, incurring a high cost in the 
presence of collision risks with other agents’ trajectories. Fur-
thermore, the ultimate output reference route is labeled with 
πs, signifying whether it undergoes truncation as a result of 
colliding with a static obstacle, at which point the AV must 
come to a stop at the end of the reference route.

MOTION PLANNING AND CONTROL
Upon acquiring the reference route and constraints from the 
behavioral planning module, the subsequent objective is to 

create the trajectory for the AV following the specified refer-
ence route.

CONSTRAINTS
Apart from the maximum speed limit vrr  of the reference 
route, the motion planning module encompasses various con-
straints: 1) the speed limit influenced by the path curvature;  
2) the speed restriction related to pedestrian clearance, con-
sidering the obstacle’s width inflation wo; and 3) the terminal 
speed limit if a halt is necessary at the end of the reference 
route. For the speed limit from path curvature, it follows that

 ( ) ( )/v s a slat# llr r  (1)

where ( )a slatr  represents the maximum lateral acceleration 
limit at the position s, while l  symbolizes the curvature. 
Speed constraints due to pedestrian clearance are depicted 
through piecewise curves, following

 ( )
( , , )
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where ( )lerp $  represents the linear interpolation function. The 
variable c represents the clearance to pedestrians at a specific 
sampling point, taking into account the shape of the AV. The 
symbol (·)d  signifies predefined clearance thresholds, while 
(·)vr  represents the associated speed limits.

MOTION PLANNING
The objective of motion planning is to generate a trajectory 
for the AV that is both safe and kinodynamically feasible, in 
accordance with the decision made by the behavior planner. 
To achieve this, our method involves two steps. First, a local 
Frenét coordinate frame is constructed based on the reference 
route, and the surrounding static obstacles are projected onto 
this frame. Subsequently, we structure the path generation 
problem using our Gaussian process motion planning (GPMP) 
framework [11]. This framework converts collision and speed 
limit constraints [refer to (1) and (2)] into probabilistic factors. 
The resultant path is derived from a maximum a posteriori 
problem. Upon establishing the initial path, predicted trajec-
tories of dynamic obstacles are projected relative to this path, 
and an s–t graph is formulated. We then utilize a breadth-
first search on this graph to identify an initial speed profile, 
which is later refined using piecewise polynomials through a 
quadratic programming problem. By integrating the path and 
speed profile, we assess the kinodynamic feasibility of the 
trajectory. If the resultant trajectory is found to breach any 
constraints, additional curvature constraints sourced from the 
current speed profile are incorporated into the path generation 
procedure, prompting the generation of a new path. Likewise, 
a fresh speed profile is constructed based on this new path. 
This iterative process continues until the trajectory either sat-
isfies all constraints or exceeds the stipulated time limit.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University College London. Downloaded on August 28,2024 at 11:09:24 UTC from IEEE Xplore.  Restrictions apply. 



9     IEEE ROBOTICS & AUTOMATION MAGAZINE

As shown in Figure 5, for this module, the planning cycle 
does not operate at a fixed time interval. This is because overly 
frequent planning loops may exacerbate navigation perfor-
mance due to increased noise from localization information 
and perception. Conversely, planning with a low-frequency 
loop may reduce the AV’s reaction ability when an accident is 
imminent. As a result, this work adopts a rule-based trajectory 
updating scheme. Specifically, when the AV is simply follow-
ing a path, the output trajectory is updated only when it nears 
completion. However, in scenarios involving potential interac-
tions with traffic agents, the planning cycle accelerates to a 
higher frequency (10 Hz) to enhance its ability to safely react 
to potential accidents.

CONTROL
The controller plays a crucial role in ensuring the safe opera-
tion of the vehicle, especially when dealing with varying road 
conditions. Therefore, we develop a controller to track the tra-
jectory generated by the upstream motion planner accurately. 
Since our vehicle is based on Ackermann steering, the vehicle 
model can be simplified to a simpler bicycle model. Following 
[12], our controller takes into account the coupled lateral and 
longitudinal dynamics of the vehicle model, which allows us 
to simultaneously control the steering angle and acceleration 
of the vehicle. The system dynamics follow

 .
dt
d x x uA B C tar}= + + o  (3)

The system state is [ , , , , , ] ,x e e e e e e T
lat lat lon lon= } }o o o  where elat 

is the lateral position error, e}  is the heading error, elon is the lon-
gitudinal error, and eo  is their rate. The control input [ , ]u acc Td=  
includes the vehicle’s steering angle d  and longitudinal accelera-
tion acc, while tar}o  denotes the vehicle’s target heading rate. 
Inside (3), the matrix A is
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where m represents the weight, lf and lr are the distance from 
the center of gravity of the vehicle to its front or rear tire of 
the bicycle model, and Cf and Cr are the equivalent cornering  
stiffness coefficient. In addition, matrices B and C follow
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where Iz denotes the moment of inertia, and Vx is the current 
longitudinal speed of the vehicle. Given the system dynamics 
formulations, the controller is designed based on model pre-
dictive control (MPC), and the loss function follows
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In the above equation, Q and R are the weight matrices. 
Additionally, N denotes the time horizon, maxd  is the maxi-
mum steering angle, and acc( )$  represents the acceleration 
bounds. Overall, (3) and (6) can be solved by standard qua-
dratic programming solvers like OSQP.

EXPERIMENTAL RESULTS
This section discusses the practical applications of our 
autonomous shuttle, Snow Lion, on the Hong Kong Universi-
ty of Science and Technology campus in Guangzhou, China 
[HKUST (GZ)]. Between 8 June 2023 and 7 August 2023, 
Snow Lion operated for three periods each day, with two hours 
in each period, to enhance campus mobility. It followed pre-
defined routes, covering various fixed locations. The cumula-
tive travel distance for the AV amounted to 1,147 kilometers. 
Further information regarding these transportation tasks is 
presented in Table 1. A selection of illustrative photos cap-
tured during the tasks is presented in Figure 7. It is noteworthy 
that in case of setbacks during autonomous shuttle operations,  
such as inevitable accidents or system errors, a security guard 
is consistently present within the AV. In the event of any 

STATION NN7 NN20 C6 SE13 GYM 1B C1 

Time 08:00 08:03 08:10

08:20 08:23 08:30

08:40 08:43 08:50 09:02 09:05 09:06 09:13

09:25 09:28 09:29 09:36

09:48 09:51 09:52 10:00

TABLE 1. The schedule specifies the autonomous shuttle’s two-hour morning departure, with station locations provided 
in Figure 1. Similar operational shifts take place at noon (12:00–14:00) and in the evening (17:30–19:00).
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autonomous navigation failure, the responsibility for vehicle 
control is promptly transferred to the security guard to ensure 
passenger safety. We anticipate reduced human intervention 
in the shuttle tasks. Performance evaluation is based on the 
frequency of human interventions and other pertinent crite-
ria, all of which are automatically recorded in the ROS bag 
format. Detailed results are presented in Figure 8 and Table 2. 
This metric registers an instance when the acceleration falls 
below  .1 m/s2-  Additionally, “takeovers” signifies the aver-
age distance an autonomous shuttle covers before necessitat-
ing manual intervention by security personnel.

Analysis of the data in Table 2 reveals that the autonomous 
shuttle consistently maintains a comfortable driving perfor-
mance, with an absolute deceleration of less than 1.83 m/s2  
and an absolute jerk value of less than 1.93 m/s2  over the 
course of the last 1,000 km of operations. Furthermore, upon 
reviewing the illustration in Figure 8(b), the autonomous shut-
tle consistently maintains a relatively high-speed performance, 
with speeds exceeding 9 km/h in in over 47.4% of operational 
instances, but experiences speed reductions at intersections 
and during turning scenarios.

Additionally, Figure 9 presents the statistical analysis of 
calculation times for both behavioral planning and motion 

planning within our framework. The statistics were obtained 
by collecting data spanning 7 h of autonomous operation. The 
analysis indicates that our pipeline achieves real-time perfor-
mance, with calculation times falling below 85.1 milliseconds 
in 95% of cases.

LESSONS LEARNED AND CONCLUSIONS
Navigating an AV through a university campus, marked by 
a highly unpredictable environment with diverse traffic par-
ticipants and an absence of traffic regulations, presents formi-
dable challenges. This section mainly discuss these challenges 
from a planning perspective, which predominantly emanate 
from several aspects.

LOCALIZATION INSTABILITY
Our framework heavily relies on localization information as it 
not only affects the controller’s tracking performance but also 
influences the decision-making process (some behaviors are 
determined based on the localization’s scenario tags). How-
ever, from the standpoint of point cloud mapping, localiza-
tion instability may be unavoidable, particularly in scenarios 
with sparse point cloud features for mapping (empty square) 
or when map features evolve over time (e.g., tree growth and 
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FIGURE 8. The statistical results for the autonomous shuttle during its operation period. (a) The recorded passenger volumes at vari-
ous times, with the periods distinguished based on the schedule in Table 1. In total, the operation spanned 39 days, averaging 10.82 
passengers per day. The morning period resulted in 106 passengers, averaging 2.72 passengers. The noon period recorded 197 pas-
sengers, averaging 5.05 passengers. The night period produced 119 passengers, with an average of 3.05 passengers. (b) The speed 
distribution of the AV over the last 1,000 kilometers traveled within the campus.
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leaf expansion affecting the effectiveness of an offline map). 
This failure may also manifest when the AV encounters a large 
truck, which can obstruct valuable environmental features for 
the lidar sensors. We address this issue by incorporating local-
ization error information into the behavioral planning mod-
ule. When a significant localization error arises (covariance 
increases), it triggers a forced speed limit 0.5 m/s^ h of the AV 
to alleviate the computational burden associated with the map-
ping process. This strategy is simple yet effective. Moreover, 
when the speed decreases, the mapping error rapidly recovers, 
restoring the normal autonomous driving status.

PERCEPTION DISTURBANCES
For results from object detection and trajectory prediction, 
they are doomed to be full of noise as the environment is full 
of uncertainty and fewer traffic regulations. We found that a 
constant velocity model and a lane-keeping speed planning 
scheme is enough for a stable navigation performance. When 
it really matters for the behavior decision process, for exam-
ple, the lane change maneuver, we solve this by adding certain 
delays in the state machine in the behavioral planning, mak-
ing the navigation performance more stable. Another chal-
lenge arises from the tree shades along the roadway, depicted 
in Figure 10. The dynamic tree shades may shift over time due 
to wind or extend toward the center of the road as they grow. 
This situation complicates the ability to maintain a secure and 
consistent path for the AV, particularly in narrow paths. It also 
causes disruptions in the perception module, leading to dis-
torted shape detection and potentially impacting speed rec-
ognition. Exploring more effective technologies to eliminate 
tree-related obstacles is crucial in resolving this issue.

PLANNING ASPECT
Regarding the planning aspect, our investigation revealed 
that clear planning behavior for other road users and 
the understanding of their intentions are crucial fac-
tors for user-friendly autonomous driving. This includes 
recognizing whether other agents are aware of their 
interaction with the AV or understand that the AV acknowl-
edges their intentions. Ensuring clarity in these interac-
tions is vital to prevent sudden braking and ensure safety  
for the AV. Despite the slowdown strategy (2) implemented in 
our planning process effectively mitigating these concerns, 
resulting in an average of 13.34 kilometers for each manual 

takeover during the operational period, nevertheless, these 
challenges persist and warrant further investigation in future 
studies.

TRACKING ISSUES
While the raw trajectory computed by our GPMP [11] under-
goes additional smoothing via an MPC solver to enhance the 
tracking performance, it is inevitable that a certain degree of 
tracking error occurs during execution by the chassis (whose 

METRIC VALUES METRIC VALUES 

Maximum speed 11.76 km/h Average speed 7.41 km/h 

Percent speed 9$  km/h 47.4% Minimum acceleration −1.83 m/s2

Maximum acceleration 1.12 m/s2 Minimum jerk −1.93 m/s3

Maximum jerk 1.84 m/s3 Braking time (acceleration #–1 m/s2) 0.77 km/time 

Takeovers 13.34 km/time – – 

TABLE 2. Performances of autonomous shuttle tasks over the last 1,000 kilometers traveled within the campus.
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FIGURE 9. The statistics of calculation times for planning mod-
ules.

FIGURE 10. Situations where the presence of tree shade poten-
tially impacts the perception results and navigation performance 
of AVs, especially when the trees sway in the wind, causing 
fluctuations in the boundary of the drivable area.
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performance is immutable). Therefore, alongside (1), we incor-
porate distinct speed constraints tailored to each behavioral 
scenario if the desired tracking outcome cannot be achieved 
in the final performance.

FAST COLLISION CHECKING
In this study, bounding volume hierarchy (BVH) technology is 
deployed to enhance the collision checking process. This tech-
nology is widely used in robotics, and many collision checking 
libraries, such as the Fast Collision Library [13], have incorpo-
rated it. Specifically, we construct BVH trees based on agents’ 
predicted trajectories at each time slot. We then update the 
grid of the s–l–t planning space by querying these BVH trees. 
Additionally, not all grids are queried; some grids are quickly 
identified as empty if their previous grid is away from obsta-
cles (according to clearance).

OTHERS
Two additional considerations are involved during the imple-
mentation of our autonomous shuttle. First, the intention detec-
tion module faces challenges in effectively operating within a 
nonfixed road network environment. In such an environment, 
traffic agents often exhibit unexpected maneuvers, such as 
overtaking, jaywalking, and more, owing to the absence of fully 
compliant lane constraints in these scenarios. Current predic-
tion methods heavily depend on these data and, consequently, 
frequently encounter difficulties in accurately forecasting the 
movements of other agents. Although we employ manually 
defined observation areas to address these challenges, particu-
larly in intricate intersections and unstructured regions, this 
strategy still imposes a significant workload on fine-tuning 
navigation performance for new scenarios. Another concern 
pertains to responsibility. In the event of an accident involving 
an AV, determining liability requires identifying a responsible 
party, such as the onboard security guard. This poses challeng-
es for the proliferation of autonomous driving technologies and 
underscores the need for sound legal regulations.

Overall, this article presents the design of an autono-
mous shuttle system, highlighting its quantitative perfor-
mance and discussing challenges in scenarios with limited 
traffic regulation. The proposed system improves campus 
mobility, facilitating the transport of 235 passengers over 
39 days of operation. In future research, we will endeavor 
to reduce takeover times and address the previously men-
tioned challenges.
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