14 research outputs found
East Asian Order Formation and Sino-Japanese Relations
Eastphalia Emerging?: Asia, International Law, and Global Governance, Symposium. Indiana University Maurer School of Law, Bloomington, Indiana, 200
East Asian Order Formation and Sino-Japanese Relations
Eastphalia Emerging?: Asia, International Law, and Global Governance, Symposium. Indiana University Maurer School of Law, Bloomington, Indiana, 200
2D Au Nanosphere Arrays/PVA-PBA-Modified-Hydrogel Composite Film for Glucose Detection with Strong Diffraction Intensity and Linear Response
A novel glucose sensor was reported that consisted of two-dimensional (2D) Au nanosphere arrays and glucose-responsive hydrogel film. This sensor exhibited an intense diffraction signal and an obvious diffraction color on a quartz slide due to the strong diffraction intensity of the Au nanosphere arrays. Thus, glucose was detected via the variation of diffraction wavelength and diffraction color, without a high reflective mirror. In addition, by introducing poly(vinyl alcohol) (PVA) to crosslink the phenylboronic acid (PBA)-modified hydrogel film, the diffraction wavelength of the 2D Au nanosphere arrays/hydrogel composite film shifted in the same direction in high ionic strength condition. In particular, it showed a nearly linear red-shift when the glucose concentration increased from 0 mM to 20 mM. Moreover, this glucose sensor displayed good reproducibility. The nearly linear response and good reproducibility were highly helpful for improving practical application of this glucose sensor
Wafer-Scale Hierarchical Nanopillar Arrays Based on Au Masks and Reactive Ion Etching for Effective 3D SERS Substrate
Two-dimensional (2D) periodic micro/nanostructured arrays as SERS substrates have attracted intense attention due to their excellent uniformity and good stability. In this work, periodic hierarchical SiO2 nanopillar arrays decorated with Ag nanoparticles (NPs) with clean surface were prepared on a wafer-scale using monolayer Au NP arrays as masks, followed by reactive ion etching (RIE), depositing Ag layer and annealing. For the prepared SiO2 nanopillar arrays decorated with Ag NPs, the size of Ag NPs was tuned from ca. 24 to 126 nanometers by controlling the deposition thickness of Ag film. Importantly, the SiO2 nanopillar arrays decorated with Ag NPs could be used as highly sensitive SERS substrate for the detection of 4-aminothiophenol (4-ATP) and rhodamine 6G (R6G) due to the high loading of Ag NPs and a very uniform morphology. With a deposition thickness of Ag layer of 30 nm, the SiO2 nanopillar arrays decorated with Ag NPs exhibited the best sensitive SERS activity. The excellent SERS performance of this substrate is mainly attributed to high-density “hotspots” derived from nanogaps between Ag NPs. Furthermore, this strategy might be extended to synthesize other nanostructured arrays with a large area, which are difficult to be prepared only via conventional wet-chemical or physical methods