53 research outputs found

    Residual Attention Network for Image Classification

    Full text link
    In this work, we propose "Residual Attention Network", a convolutional neural network using attention mechanism which can incorporate with state-of-art feed forward network architecture in an end-to-end training fashion. Our Residual Attention Network is built by stacking Attention Modules which generate attention-aware features. The attention-aware features from different modules change adaptively as layers going deeper. Inside each Attention Module, bottom-up top-down feedforward structure is used to unfold the feedforward and feedback attention process into a single feedforward process. Importantly, we propose attention residual learning to train very deep Residual Attention Networks which can be easily scaled up to hundreds of layers. Extensive analyses are conducted on CIFAR-10 and CIFAR-100 datasets to verify the effectiveness of every module mentioned above. Our Residual Attention Network achieves state-of-the-art object recognition performance on three benchmark datasets including CIFAR-10 (3.90% error), CIFAR-100 (20.45% error) and ImageNet (4.8% single model and single crop, top-5 error). Note that, our method achieves 0.6% top-1 accuracy improvement with 46% trunk depth and 69% forward FLOPs comparing to ResNet-200. The experiment also demonstrates that our network is robust against noisy labels.Comment: accepted to CVPR201

    The miR-1204 regulates apoptosis in NSCLC cells by targeting DEK

    Get PDF
    Introduction. This study endeavors to analyze the effects of miR-1204 on the expression of DEK oncogene in non-small cell lung cancer (NSCLC) cell lines and to study the molecular mechanisms of these effects. Material and methods. The miR-1204 mimics and inhibitors were transfected into the (A549 and SPC) NSCLC cells. Then the mRNA levels, cell viability, apoptosis rate, morphology and caspase activity were determined. The expression of apoptosis-related proteins Bcl-2 and Bax was also analyzed. Results. In NSCLC cell lines (A549 and SPC), DEK mRNA levels were down-regulated in miR-1204 overex­pression group. In miR-1204 inhibition group, the expression of DEK mRNA showed an opposite trend. The overexpression of miR-1204 increases the apoptosis rate in NSCLC cells. The Bcl-2 levels in the miR-1204 over­expression group were decreased, while the Bax level was increased. In the miR-1204 inhibition group, expression of Bcl-2 and Bax showed opposite trends. Cell staining revealed cell’s morphological changes; the apoptosis in the miR-1204 overexpression group revealed significant morphological features, such as brighter nuclei and nu­clear condensation. Results indicated a typical characteristic of apoptosis in the miR-1204 overexpression group. Caspase-9 and Caspase-3 were involved in the apoptosis pathway, which was mediated by miR-1204 and DEK. Conclusions. The miR-1204 induces apoptosis of NSCLC cells by inhibiting the expression of DEK. The mech­anism of apoptosis involves down-regulation of Bcl-2 and up-regulation of Bax expression. Moreover, the apoptosis was mediated by mitochondria-related caspase 9/3 pathway

    Select2Col: Leveraging Spatial-Temporal Importance of Semantic Information for Efficient Collaborative Perception

    Full text link
    Collaboration by leveraging the shared semantic information plays a crucial role in overcoming the perception capability limitations of isolated agents. However, existing collaborative perception methods tend to focus solely on the spatial features of semantic information, while neglecting the importance of the temporal dimension. Consequently, the potential benefits of collaboration remain underutilized. In this article, we propose Select2Col, a novel collaborative perception framework that takes into account the {s}patial-t{e}mpora{l} importanc{e} of semanti{c} informa{t}ion. Within the Select2Col, we develop a collaborator selection method that utilizes a lightweight graph neural network (GNN) to estimate the importance of semantic information (IoSI) in enhancing perception performance, thereby identifying contributive collaborators while excluding those that bring negative impact. Moreover, we present a semantic information fusion algorithm called HPHA (historical prior hybrid attention), which integrates multi-scale attention and short-term attention modules to capture the IoSI in feature representation from the spatial and temporal dimensions respectively, and assigns IoSI-consistent weights for efficient fusion of information from selected collaborators. Extensive experiments on two open datasets demonstrate that our proposed Select2Col significantly improves the perception performance compared to state-of-the-art approaches. The code associated with this research is publicly available at https://github.com/huangqzj/Select2Col/

    Novel Y-chromosomal microdeletions associated with non-obstructive azoospermia uncovered by high throughput sequencing of sequence-tagged sites (STSs)

    Get PDF
    Y-chromosomal microdeletion (YCM) serves as an important genetic factor in non-obstructive azoospermia (NOA). Multiplex polymerase chain reaction (PCR) is routinely used to detect YCMs by tracing sequence-tagged sites (STSs) in the Y chromosome. Here we introduce a novel methodology in which we sequence 1,787 (post-filtering) STSs distributed across the entire male-specific Y chromosome (MSY) in parallel to uncover known and novel YCMs. We validated this approach with 766 Chinese men with NOA and 683 ethnically matched healthy individuals and detected 481 and 98 STSs that were deleted in the NOA and control group, representing a substantial portion of novel YCMs which significantly influenced the functions of spermatogenic genes. The NOA patients tended to carry more and rarer deletions that were enriched in nearby intragenic regions. Haplogroup O2* was revealed to be a protective lineage for NOA, in which the enrichment of b1/b3 deletion in haplogroup C was also observed. In summary, our work provides a new high-resolution portrait of deletions in the Y chromosome.National Key Scientific Program of China [2011CB944303]; National Nature Science Foundation of China [31271244, 31471344]; Promotion Program for Shenzhen Key Laboratory [CXB201104220045A]; Shenzhen Project of Science and Technology [JCYJ20130402113131202, JCYJ20140415162543017]SCI(E)[email protected]; [email protected]; [email protected]

    Amphoteric starch-based bicomponent modified soil for mitigation of harmful algal blooms (HABs) with broad salinity tolerance: flocculation, algal regrowth, and ecological safety

    Get PDF
    The treatment of harmful algal blooms (HABs) by in-situ flocculation is an emerging technology capable of efficiently removing HABs from natural waters. However, differences in salinity, pH and algal species in freshwaters and seawaters can influence the flocculation treatment. In this study, we developed a bicomponent modified soil using amphoteric starch (AS) and poly-aluminium chloride (PAC) in order to effectively flocculate microalgae under broad salinity conditions. Specifically, the impacts of water salinity (0–3.3%), pH (3–11), and algal species (Microcystis aeruginosa and marine Chlorella sp.) were investigated in order to evaluate efficiency, dosage and mechanisms of algae flocculation. The results showed that AS-PAC modified soils possessed excellent resistance to salinity change due to the anti-polyelectrolyte effect of AS, which contributed to 99.9% removal efficiency of M. aeruginosa in fresh and saline waters, and Chlorella sp. in marine water, respectively. The dosage of the flocculant modifier was only 10–20% of that of another proven modifier (i.e. Moringa oleifera), which substantially reduced the material cost. The high salinity tolerance of algal flocculation by the AS-PAC modified soil was attributed to the synergistic processes of charge neutralization and netting-bridging. Thus, this study has developed a universal flocculant and revealed fundamental mechanisms for the mitigation of HABs under broad salinity conditions

    The developmental miR-17–92 cluster and the Sfmbt2 miRNA cluster cannot rescue the abnormal embryonic development generated using obstructive epididymal environment-producing sperm in C57BL/6 J mice

    No full text
    Abstract Background Sperm, during epididymal transit, acquires microRNAs(miRNAs), which are crucial for embryonic development. However, whether sperm miRNAs influenced by an obstructive epididymal environment affect embryonic development remains unknown. Method The sham operation and vasectomy were performed in C57BL/6 J mice to create the control group (CON) and the obstructive epididymal environment group(OEE) group, respectively. The morphology of the testis and epididymis was observed using hematoxylin and eosin staining (HE staining) to establish the OEE mice model. The sperm quality test, intracytoplasmic sperm injection (ICSI), and epididymosomes fusion were employed to observe the effect of the obstructive epididymal environment on sperm and resultant embryonic development. The alteration of the sperm small RNA (sRNA) profile was analyzed by sRNA sequencing. RT-qPCR and DNA methylation were applied to observe the effect of obstructive epididymis on the expression of sperm miRNAs. The miRNAs microinjection was used to explore the impacts of sperm miRNAs on embryonic development. Results We confirmed postoperative 8-week mice as the OEE mice model by examining the morphology of the testis and epididymis. In the OEE group, we observed that sperm quality degraded and the development potential of embryos was reduced, which can be saved by the normal epididymal environment. The sperm sRNA sequencing revealed that the expression of the developmental miR-17–92 cluster and the Sfmbt2 miRNA cluster was downregulated in the OEE group. The expression of these two miRNA clusters in epididymis was also downregulated and regulated by DNA methylation. However, the downregulation of either the miR-17–92 cluster or the Sfmbt2 miRNA cluster in normal zygotes did not impair embryonic development. Conclusion The obstructive epididymal environment influences sperm quality and resultant embryonic development, as well as the abundance of the developmental miR-17–92 cluster and the Sfmbt2 miRNA cluster in sperm, but these miRNA clusters are not the cause of abnormal embryonic development. It implies that epididymis is important in early embryonic development and may play a potential role in sperm epigenome

    Study of surface photovoltage spectrum in p+-GaAs/p-GaAlAs/p-GaAs structures

    No full text
    Surface photovoltage (SPV) in p ^+ -GaAs/p-GaAlAs/p-GaAs has been studied by establishing a multilayer model and measuring the SPV at room temperature. The model mainly considers surface recombination velocity, interface recombination velocity and the space charge region (SCR) at the surface of p ^+ -GaAs. The SPV of the multilayer structure is shown to originate predominantly from the minority carrier diffusion, which caused photovoltage between the surface and bottom. Subsequently, the minority carrier diffusion lengths in p ^+ -GaAs and in p-GaAs are obtained from fitting experimental data to the theoretical model. At the same time, the minority carrier diffusion length in p-GaAs is obtained by illuminating the backside (illuminating on p-GaAs) of the p ^+ -GaAs/p-GaAlAs/p-GaAs. The p ^+ -GaAs in p ^+ -GaAs/p-GaAlAs/p-GaAs structure with different thickness are measured to show the variation of SPS with different thickness, but the experimental parameters are not affected. In multi-layer structure, the SPV contributed by different layers has a great difference with different dark saturation current density

    Guest editorial : Cloud-based video processing and content sharing

    No full text
    • …
    corecore