707 research outputs found

    Moral perfectionism and moral values, virtues, and judgments: Further investigations

    Get PDF
    In a first psychological investigation of moral perfectionism, Yang, Stoeber, and Wang (2015) adapted items from the Frost Multidimensional Perfectionism Scale to differentiate perfectionistic personal moral standards and concern over moral mistakes. Examining a sample of Chinese students, Yang et al. found that personal moral standards showed unique positive relationships with moral values, virtues, and judgments, whereas concern over moral mistakes did not. The present study aimed to replicate Yang et al.’s findings in a sample of Western students (N = 243), additionally including measures of moral identity and moral disengagement. Furthermore, the study examined whether moral perfectionism explained variance in moral attitudes beyond general perfectionism. Results largely replicated Yang et al.’s findings. Personal moral standards (but not concern over moral mistakes) showed unique positive relationships with moral values, virtues, and judgments and a unique negative relationship with moral disengagement. Furthermore, moral perfectionism explained significant variance in moral attitudes beyond general perfectionism. The present findings suggest that moral perfectionism is a personality characteristic that is relevant in both Asian and Western cultures and explains individual differences in moral attitudes beyond general perfectionism

    Changes in Snow Phenology from 1979 to 2016 over the Tianshan Mountains, Central Asia

    Get PDF
    Snowmelt from the Tianshan Mountains (TS) is a major contributor to the water resources of the Central Asian region. Thus, changes in snow phenology over the TS have significant implications for regional water supplies and ecosystem services. However, the characteristics of changes in snow phenology and their influences on the climate are poorly understood throughout the entire TS due to the lack of in situ observations, limitations of optical remote sensing due to clouds, and decentralized political landscapes. Using passive microwave remote sensing snow data from 1979 to 2016 across the TS, this study investigates the spatiotemporal variations of snow phenology and their attributes and implications. The results show that the mean snow onset day (Do), snow end day (De), snow cover duration days (Dd), and maximum snow depth (SDmax) from 1979 to 2016 were the 78.2nd day of hydrological year (DOY), 222.4th DOY, 146.2 days, and 16.1 cm over the TS, respectively. Dd exhibited a spatial distribution of days with a temperature of \u3c0 \u3e°C derived from meteorological station observations. Anomalies of snow phenology displayed the regional diversities over the TS, with shortened Dd in high-altitude regions and the Fergana Valley but increased Dd in the Ili Valley and upper reaches of the Chu and Aksu Rivers. Increased SDmax was exhibited in the central part of the TS, and decreased SDmax was observed in the western and eastern parts of the TS. Changes in Dd were dominated by earlier De, which was caused by increased melt-season temperatures (Tm). Earlier De with increased accumulation of seasonal precipitation (Pa) influenced the hydrological processes in the snowmelt recharge basin, increasing runoff and earlier peak runoff in the spring, which intensified the regional water crisi

    Properties of Banach function algebras

    Get PDF
    This thesis is devoted to the study of various properties of Banach function algebras. We are particularly interested in the study of antisymmetric decompositions for uniform algebras and regularity of Banach function algebras. We are also interested in the study of Swiss cheese sets, essential uniform algebras and characterisations of C(X) among its subalgebras. The maximal antisymmetric decomposition for uniform algebras is a generalisation of the celebrated Stone-Weierstrass theorem and it is a powerful tool in the study of uniform algebras. However, in the literature, not much attention has been paid to the study of closed antisymmetric subsets. In Section 1.7 we give a characterisation of all the closed antisymmetric subsets for the disc algebra on the unit circle, and we use this characterisation to give a new proof of Wermer’s maximality theorem. Then in Section 4.1 we give characterisations of all the closed antisymmetric subsets for normal uniform algebras on the unit interval or the unit circle. The two types of regularity points, the R-point and the point of regularity, are important concepts in the study of regularity of Banach function algebras. In Section 3.2 we construct two examples of compact plane sets X, such that R(X) has either one R-point while having no points of regularity, or R(X) has one point of continuity while having no R-points. There are the first known examples of natural uniform algebras in the literature which show that R-points and points of continuity can be different. We then use properties of regularity points to study R(X) which is not regular while having no non-trivial Jensen measures. We also use properties of regularity points in Section 4.2 to study small exceptional sets for uniform algebras. In Chapter 2 we study Swiss cheese sets. Our approach is to regard Swiss cheese sets “abstractly”: we study the family of sequences of pairs of numbers, where the numbers represent the centre and radius of discs in the complex plane. We then give a natural topology on the space of abstract Swiss cheeses and give topological proofs of various classicalisation theorems. It is standard that the study of general uniform algebras can be reduced to the study of essential uniform algebras. In Chapter 5 we study methods to construct essential uniform algebras. In particular, we continue to study the method introduced in [26] to show that some more properties are inherited by the constructed essential uniform algebra from the original one. We note that the material in Chapter 2 is joint work with J. Feinstein and S. Morley and is published in [28, 27]. The material in Chapter 3 is joint work with J. Feinstein and is published in [32]. Section 4.2 contains joint work with J. Feinstein

    Prediction of Commuter’s Daily Time Allocation

    Get PDF
    This paper presents a model system to predict the time allocation in commuters’ daily activity-travel pattern. The departure time and the arrival time are estimated with Ordered Probit model and Support Vector Regression is introduced for travel time and activity duration prediction. Applied in a real-world time allocation prediction experiment, the model system shows a satisfactory level of prediction accuracy. This study provides useful insights into commuters’ activity-travel time allocation decision by identifying the important influences, and the results are readily applied to a wide range of transportation practice, such as travel information system, by providing reliable forecast for variations in travel demand over time. By introducing the Support Vector Regression, it also makes a methodological contribution in enhancing prediction accuracy of travel time and activity duration prediction

    Uncertainty Sentence Sampling by Virtual Adversarial Perturbation

    Full text link
    Active learning for sentence understanding attempts to reduce the annotation cost by identifying the most informative examples. Common methods for active learning use either uncertainty or diversity sampling in the pool-based scenario. In this work, to incorporate both predictive uncertainty and sample diversity, we propose Virtual Adversarial Perturbation for Active Learning (VAPAL) , an uncertainty-diversity combination framework, using virtual adversarial perturbation (Miyato et al., 2019) as model uncertainty representation. VAPAL consistently performs equally well or even better than the strong baselines on four sentence understanding datasets: AGNEWS, IMDB, PUBMED, and SST-2, offering a potential option for active learning on sentence understanding tasks

    Effect of budesonide transnasal nebulization in patients with eosinophilic chronic rhinosinusitis with nasal polyps

    Get PDF
    Background: There is little evidence on the efficacy of glucocorticoid transnasal nebulization therapy in patients with eosinophilic chronic rhinosinusitis with nasal polyps (CRSwNP). Objective: We sought to evaluate the immunologic and remodeling effects of budesonide transnasal nebulization in patients with eosinophilic CRSwNP. Methods: Sixty patients with eosinophilic CRSwNP were randomized to receive budesonide or placebo treatment for 14 days by means of transnasal nebulization in a double-blind manner. Endoscopic polyp size scores (maximum 5 6 points, Kennedy score) and visual analog scale scores for nasal symptoms were assessed before and after treatment. Similarly, polyp samples were evaluated for inflammatory cytokines, matrix metalloproteinases (MMPs), and tissue inhibitors of metalloproteinases (TIMPs) by using an immunoassay; collagen by using histochemistry; eosinophils by using hematoxylin and eosin stain; and T-cell subsets by using flow cytometry. Results: Budesonide transnasal nebulization significantly reduced polyp size compared with placebo (mean difference between groups, 20.73 units; 95% CI, -1.15 to -0.32 units; P = .002) and improved symptoms. Polyp IL-5 and eotaxin expression decreased significantly, whereas TGF-beta and IL-10 expression increased. Expression of IFN-gamma and IL-17 was not altered. Budesonide transnasal nebulization consistently reduced eosinophil infiltration and T(H)2 cell frequency and increased natural regulatory T-cell and type 1 regulatory T-cell frequencies. Indices of remodeling, including albumin, MMP-2, MMP-7, MMP-8, and MMP-9, were significantly decreased, whereas collagen deposition and TIMP-1, TIMP-2, and TIMP-4 levels were significantly increased. Budesonide transnasal nebulization did not suppress the hypothalamicpituitary-adrenal axis or cause any serious side effects. Conclusion: Short-term budesonide transnasal nebulization is an effective and safe treatment option in patients with eosinophilic CRSwNP, achieving clinical improvement by regulating remodeling, cytokine expression, and T-cell subset distribution

    Quasinormal Modes of C-metric from SCFTs

    Full text link
    We study the quasinormal modes (QNM) of the charged C-metric, which physically stands for a charged accelerating black hole, with the help of Nekrasov's partition function of 4d N=2\mathcal{N}=2 superconformal field theories (SCFTs). The QNM in the charged C-metric are classified into three types: the photon-surface modes, the accelerating modes and the near-extremal modes, and it is curious how the single quantization condition proposed in arXiv:2006.06111 can reproduce all the different families. We show that the connection formula encoded in terms of Nekrasov's partition function captures all these families of QNM numerically and recovers the asymptotic behavior of the accelerating and the near-extremal modes analytically. Using the connection formulae of different 4d N=2\mathcal{N}=2 SCFTs, one can solve both the radial and the angular part of the scalar perturbation equation respectively. The same algorithm can be applied to the de Sitter (dS) black holes to calculate both the dS modes and the photon-sphere modes.Comment: 46+8 page
    corecore