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1. Introduction    

Protein-protein interactions (PPI) play a key role in various aspects of the structural and 
functional organization of the cell. Knowledge about them unveils the molecular 
mechanisms of biological processes. A number of databases such as MINT (Zanzoni et al., 
2002), BIND (Bader et al., 2003), and DIP (Xenarios et al., 2002) have been created to store 
protein interaction information in structured and standard formats. However, the amount of 
biomedical literature regarding protein interactions is increasing rapidly and it is difficult 
for interaction database curators to detect and curate protein interaction information 
manually. Thus, most of the protein interaction information remains hidden in the text of 
the papers in the literature. Therefore, automatic extraction of protein interaction 
information from biomedical literature has become an important research area.  
Existing PPI works can be roughly divided into three categories: Manual pattern engineering 
approaches, Grammar engineering approaches and Machine learning approaches. 
Manual pattern engineering approaches define a set of rules for possible textual 
relationships, called patterns, which encode similar structures in expressing relationships. 
The SUISEKI system uses regular expressions, with probabilities that reflect the 
experimental accuracy of each pattern to extract interactions into predefined frame 
structures (Blaschke & Valencia, 2002). Ono et al. manually defined a set of rules based on 
syntactic features to preprocess complex sentences, with negation structures considered as 
well (Ono et al., 2001). The BioRAT system uses manually engineered templates that 
combine lexical and semantic information to identify protein interactions (Corney et al., 
2004). Such manual pattern engineering approaches for information extraction are very hard 
to scale up to large document collections since they require labor-intensive and skill-
dependent pattern engineering. 
Grammar engineering approaches use manually generated specialized grammar rules that 
perform a deep parse of the sentences. Sekimizu et al. used shallow parser, EngCG, to 
generate syntactic, morphological, and boundary tags (Sekimizu et al., 1998). Based on the 
tagging results, subjects and objects were recognized for the most frequently used verbs. 
Fundel et al. proposed RelEx based on the dependency parse trees to extract relations 
(Fundel et al., 2007).  
Machine learning techniques for extracting protein interaction information have gained 
interest in the recent years. In most recent work on machine learning for PPI extraction, the 
PPI extraction task is casted as learning a decision function that determines for each 
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unordered candidate pair of protein names occurring together in a sentence whether the two 
proteins interact or not. Xiao et al. used Maximum Entropy models to combine diverse 
lexical, syntactic and semantic features for PPI extraction (Xiao et al., 2005). Zhou et al. 
employed a semantic parser using the Hidden Vector State (HVS) model for protein-protein 
interactions which can be trained using only lightly annotated data whilst simultaneously 
retaining sufficient ability to capture the hierarchical structure (Zhou et al., 2006). Yang et al. 
used Support vector machines to combine rich feature sets including word features, 
Keyword feature, protein names distance feature, Link path feature and Link Grammar 
extraction result feature to identify protein interactions (Yang et al., 2010).  
A wide range of results have been reported for the PPI extraction systems, but differences in 
evaluation resources, metrics and strategies make direct comparison of the numbers 
presented problematic (Airola et al., 2008). Further, PPI extraction methods generate poorer 
results compared with other domains such as newswire. In general, biomedical IE methods 
are scored with F-measure, with the best methods scoring about 0.85 without considering 
the limitation of test corpus, which is still far from users’ satisfaction. 
This chapter introduces three different protein-protein interactions extraction approaches 
which represent the state-of-the-art research in this area. 

2. Methods 

2.1 Multiple kernels learning mehtod 

Among machine learning approaches, kernel-based methods (Cristianini & Taylor, 2000) 
have been proposed for PPI information extraction. Kernel-based methods retain the 
original representation of objects and use the object only via computing a kernel function 
between a pair of objects. Formally, a kernel function is a mapping K: X ×X [0, )→ ∞  from 
input space X to a similarity score ( , ) ( ) ( ) ( ) ( )i i iK x y x y x yφ φ φ φ= ⋅ = Σ , where ( )i xφ  is a function 
that maps X to a higher dimensional space without the need to know its explicit 
representation. Such a kernel function makes it possible to compute the similarity between 
objects without enumerating all the features.  
Several kernels have been proposed, including subsequence kernels (Bunescu & Mooney, 
2006), tree kernels (Moschitti, 2006), shortest path kernels (Bunescu & Mooney, 2005a), and 
graph kernels (Airola et al., 2008). Each kernel utilizes a portion of the structures to calculate 
useful similarity. The kernel cannot retrieve the other important information that may be 
retrieved by other kernels. 
In recent years researches have proposed the use of multiple kernels to retrieve the widest 
range of important information in a given sentence. Kim et al. suggested four kernels: 
predicate kernel, walk kernel, dependency kernel and hybrid kernel to adequately 
encapsulate information required for a relation prediction based on the sentential structures 
involved in two entities (Kim et al., 2008). Miwa et al. proposed a method to combine BOW 
kernel, subset tree kernel and graph kernel based on several syntactic parsers, in order to 
retrieve the widest possible range of important information from a given sentence (Miwa et 
al., 2009). 
However, these methods assign the same weight to each individual kernel and their 
combined kernels fail to achieve the best performance: in Kim’s method, the performance of 
the hybrid kernel is worse than that of one of the individual kernels - the walk kernel. In 
Miwa’s method, graph kernels outperform the other individual kernels. When combined 
with the subset tree kernels, it achieves better performance. However, when further 
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combined with BOW kernels, the performance deteriorates. In fact, the performance of BOW 
kernel and graph kernels combination is worse than that of graph kernels alone. 
In this chapter, we propose a weighted multiple kernels learning based approach to extracting 
protein-protein interactions from biomedical literature. The approach combines feature-based 
kernel, tree kernel, and graph kernel with different weights: the kernel with better 
performance is assigned higher weight. Experimental results show the introduction of each 
individual kernel contributes to the performance improvement. The other novelties of our 
approach include: a) in addition to the commonly used word feature, our feature-based kernel 
includes the protein name distance feature as well as the Keyword feature. Especially, the 
introduction of Keyword feature is a way of employing domain knowledge and proves to be 
able to improve the performance effectively. b) with our tree kernel, we extend Shortest Path-
enclosed Tree and dependency path tree to capture richer contextual information. 

2.1.1 Methods 
A kernel can be thought of as a similarity function for pairs of objects. Different kernels 
calculate the similarity with different aspects between two sentences. Combining the 
similarities can reduce the danger of missing important features and produce a new useful 
similarity measure. In this work, we combine several distinctive types of kernels to extract 
PPI: feature-based kernel, tree kernel, graph kernel.  

2.1.1.1 Feature-based kernel 

The following features are used in our feature-based kernel: 

Word feature 

A bag-of-words kernel takes two unordered sets of words as feature vectors, and calculates 
their similarity, which is simple and efficient. There are two sets of word features used in 
our method. 
Words between two protein names: These features include all words that are located 
between two protein names.  
Words surrounding two protein names: These features include N words to the left of the 
first protein name and N words to the right of the second protein name. N is the number of 
surrounding words considered which is set to be three in our experiment.  

Protein name distance feature 

The shorter the distance (the number of words) between two protein names is, the more 
likely the two proteins have interaction relation. Therefore the distance is chosen as a 
feature. If there are less than three words between two proteins, the feature value is set to 
“DISLessThanThree”; if there are more than or equal to three words but less than six words 
between two proteins, the feature value is set to “DISBetweenThreeSix”. The other feature 
values include “DISBetweenSixNine”, “DISBetweenNineTwelve” and “DISMoreThanTwelve”. 

Keyword feature 

The existence of an interaction keyword (the verb expressing protein interaction relation 
such as “bind”, “interact”, “inhibit”, etc) between two protein names or among the 
surrounding words of two protein names often implies the  existence of the protein-protein 
interaction. Therefore, the existence of the keyword is chosen as a binary feature. To identify 
the keywords in texts, we built an interaction keyword list of about 500 entries manually, 
which includes the interaction verbs and their variants (for example, interaction verb “bind” 
has variants “binding” and “bound”, etc. The list can be provided upon request).  
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2.1.1.2 Tree kernel 

A convolution kernel aims to capture structured information in terms of substructures. As a 
specialized convolution kernel, convolution tree kernel KC (T1, T2) counts the number of 
common sub-trees (sub-structures) as the syntactic structure similarity between two parse 
trees T1 and T2  (Collins & Duffy, 2001) : 

 

1 1 2 2

1 2 1 2
,                      

( ,  ) ( , )C
n N n N

K T T n n
∈ ∈

= Δ∑  (1) 

where Nj is the set of nodes in tree Tj, and  ∆(n1,n2) evaluates the common sub-trees rooted at 
n1 and n2. 

Parse tree kernel 

A relation instance between two entities is encapsulated by a parse tree. Thus, it is critical to 
understand which portion of a parse tree is important in the tree kernel calculation.  
Zhang et al. explored five tree spans in relation extraction and found that the Shortest Path-
enclosed Tree (SPT, an example is shown in Figure 1) performed best (Zhang et al., 2006). 
SPT is the smallest common sub-tree including the two entities. In other words, the sub-tree 
is enclosed by the shortest path linking the two entities in the parse tree. But in some cases, 
the information contained in SPT is not enough to determine two entities’ relationship. For 
example, “interact” is critical to determine the relationship between “ENTITY1” and 
“ENTITY2” in the sentence “ENTITY1 and ENTITY2 interact with each other.” as shown in 
Figure 1. However, it is not contained in the SPT (dotted circle in Figure 1) to determine 
their relationship. By analyzing the experimental data, we found in these cases the number 
of leaf nodes in a SPT is usually less than four, following the pattern like “ENTITY1 and 
ENTITY2” and including little information except the two entity names. 
Here we employ a simple heuristic rule to expand the SPT span. By default, we adopt SPT as 
our tree span. When the number of leaf nodes in a SPT is less than four, the SPT is expanded 
to a higher level, i.e. the parent node of the root node of the original SPT is used as the new 
root node. Thus the new SPT (solid circle in Figure 1) will include richer context information 
comprising the original SPT. In the above example, the flat SPT string is extended from “(NP 
(NN PROTEIN1) (CC and) (NN PROTEIN2))” to “(S (NP (NN PROTEIN1) (CC and) (NN 
PROTEIN2)) (VP (VBP interact) (PP ((IN with) (NP (DT each) (JJ other)))))” and includes 
richer context information.  

Dependency path tree kernel 

The other type of tree structure information included in our tree kernel is from parser 
dependency analysis output. For dependency based parse representations, a dependency 
path is encoded as a flat tree as depicted as follows: (DEPENDENCY (NSUBJ (interacts 
ENTITY1)) (PREP (interacts with)) (POBJ (with ENTITY2))) corresponding to the sentence 
“ENTITY1 interacts with ENTITY2”. Because a tree kernel measures the similarity of trees 
by counting common subtrees, it is expected that the system finds effective subsequences of 
dependency paths. 
Similar to SPT parse tree, in some cases, dependency path tree also needs extension. Taking 
the sentence “The expression of rsfA is under the control of both ENTITY1 and ENTITY2.” 
as an example (its dependency parse is shown in Figure 2), the path tree between ENTITY1 
and ENTITY2 is “(DEPENDENCY (CONJ (ENTITY1, ENTITY2)).” Obviously, the 
information in this path tree is insufficient to determine the relationship between the two 
entitles. Our solution is to extend the length of dependency path between two proteins to 
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three when it is less than three. In such case, if there exist two edges in the left of the first 
protein in the whole dependency parse path, they will be included into the dependency 
path. Otherwise, the right two edges of the second protein will be included into the 
dependency path. In the above example, the path tree between ENTITY1 and ENTITY2 is 
extended from “(DEPENDENCY (CONJ (ENTITY1, ENTITY2))” to “(DEPENDENCY 
(PREP(control, of)) POBJ((of, ENTITY1)) (CONJ(ENTITY1, ENTITY2)))”. The example is 
shown in Figure 2. The optimal extension threshold three is determined through 
experiments to achieve the best performance. 
  
 

NP VP

NN CC NN

ENTITY1 and ENTITY2

VBP PP

interact IN NP

with DT JJ

each other

NP VP

NN CC NN

ENTITY1 and ENTITY2

VBP PP 

interact IN NP 

with DT JJ 

each other 

S S

 

Fig. 1. An example of the extension of Shortest Path-enclosed Tree (the original SPT is in 
dotted circle and extended SPT in solid circle.)   

2.1.1.3 Graph kernel 

A graph kernel calculates the similarity between two input graphs by comparing the 
relations between common vertices (nodes). The graph kernel used in our method is the all-
paths graph kernel proposed by Airola et al. (Airola et al., 2008). The kernel represents the 
target pair using graph matrices based on two subgraphs, and the graph features are all the 
non-zero elements in the graph matrices. The two subgraphs are a parse structure subgraph 
(PSS) and a linear order subgraph (LOS). More complete detail about the all-paths graph 
kernel is presented in (Airola et al., 2008). 
 

NSUBJ  PREP PRECONJ  CONJ 

The  expression  of  rsfA  is  under  the  control  of  both  ENTITY1  and  ENTITY2 . 

DETDET 

PREP  POBJ  CC  POBJ PREP POBJ  
 

Fig. 2. An example of dependency path tree extension. The edge marked with red color is 
the original dependency path and the edge marked with blue color is included into the new 
dependency path. 

2.1.1.4 Combination of kernels  

Each kernel has its own advantages and disadvantages. The dependency path kernel ignores 
some deep information, and conversely, the parse tree kernel does not output certain 
shallow relations. All of them ignore the words. The feature-based kernel is simple and 
efficient, but can not capture the sentence structure. The graph kernels can treat the parser’s 
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output and word features at the same time. However, they cannot treat them properly 
without tuning the kernel parameters. They may also miss some distant words, and 
similarities of paths among more than three elements (Airola et al., 2008). 
The kernels calculate the similarity with different aspects between the two sentences. 
Combining the similarities can reduce the danger of missing important features and 
produce a new useful similarity measure. To realize the combination of the different types 
of kernels based on different parse structures, we sum up the normalized output of several 
kernels Km as: 

 
1

( , ) ( , )
M

m m
m

K x x K x xσ
=

′ ′= ∑  (2) 

 
1

1,  0,  
M

m m
m

mσ σ
=

= ≥ ∀∑  (3) 

where M represents the number of types of kernels, σm is the weight of each Km which is 
determined through experiments: we tune the weight for each kernel until the overall best 
results are achieved. We found that each kernel has different performance and only when 
the kernel with better performance is assigned higher weight can the combination of each 
individual kernel produce the best result. In our experiments, the weights for feature-based 
kernel, tree kernel, and graph kernel are set to 0.6, 0.2 and 0.2 respectively in the order of 
performance rank (the weights of each individual kernel in combined kernels are shown in 
Table 5). This is a very simple combination, but the resulting kernel function contains all of 
the kernels’ information. Comparatively, the methods in (Kim et al., 2008; Miwa et al., 2009) 
assign the same weight to each individual kernel and their combined kernels fail to achieve 
the best performance. 

2.1.2 Experiments  

2.1.2.1 Experimental setting 

We evaluate method using a publicly available corpora AImed (Bunescu et al., 2005b) which 
is sufficiently large for training and reliably testing machine learning methods. It has 
recently been applied in numerous evaluations (Airola et al., 2008) and can be seen as an 
emerging de facto standard for PPI extraction method evaluation.  Further, like in (Airola et 
al., 2008), we do not consider self-interactions as candidates and remove them from the 
corpora prior to evaluation. In our implementation, we use the SVMLight package 
(http://svmlight.joachims.org/) developed by Joachims for our feature-based kernel. The 
polynomial kernel is chosen with parameter d = 4. Tree Kernel Toolkits developed by 
Moschitti is used for our tree kernel (http://dit.unitn.it/~moschitt/Tree-Kernel.htm) and 
the default parameters are used. All-paths graph kernel proposed by Airola et al. 
(http://mars.cs.utu.fi/PPICorpora/GraphKernel.html) is used for our graph kernel.  
In the test we evaluate our method with 10-fold document-level cross-validation so that no 
two examples from the same document end up in different cross-validation folds. 

2.1.2.2 Experimental results and discussion 

In this section, we firstly discuss the effectiveness of different features used in the feature-
based kernel, SPT and dependency tree and their extensions, and different kernels on 
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AImed corpus. Here AImed is used since it is sufficiently large for training and reliably 
testing machine learning methods. It has recently been applied in numerous evaluations 
(Moschitti, 2006) and can be seen as an emerging de facto standard for PPI extraction 
method evaluation. Then we provide a comprehensive evaluation of our method across five 
PPI corpora, and compare our results with earlier work. 

Effectiveness of different features in the feature-based kernel 

In our method, no feature selection is performed. We tried stemming, but found little 
decline in performance. The classification performances of different features in the feature-
based kernel tested on AImed are shown in Table 1 (the precision, recall, F-score values are 
achieved with the optimal threshold values obtained from the 10-fold cross-validations).  
With the feature-based kernel, an F-score of 50.82% and an AUC of 77.69% are achieved 
using only word features. With the introduction of protein names distance and Keyword 
feature the F-score and AUC are improved to 52.69% and 80.71% respectively. Compared 
with protein names distance feature, the Keyword feature contributes more to the 
performance improvement (1.39 percentage units’ increase in F-score and 2.48 percentage 
units’ increase in AUC). The reason is that the Keyword feature employs domain 
knowledge, which proves to be able to improve the performance effectively. Exploiting 
domain knowledge may be a promising method to further improve PPI extraction 
performance. Similar works have been reported recently. Danger et al. defined a PPI 
ontology, PPIO, and showed some preliminary results guided by the ontology (Danger et 
al., 2008). He et al. proposed a novel framework of incorporating protein-protein 
interactions ontology knowledge into PPI extraction from biomedical literature in order to 
address the emerging challenges of deep natural language understanding (He et al., 2008).     

Effectiveness of SPT parse tree, dependency tree and their extensions 

The performances of SPT parse tree, dependency path tree and their extensions tested on 
AImed are shown in Table 2. Using only SPT achieves an F-score of 50.13% and an AUC of 
76.32% while, after the introduction of SPT extension, dependency tree and its extension, the 
F-score and AUC are improved to 52.24% and 79.19% respectively (2.11 percentage units’ 
increase in F-score and 2.87 percentage units’ increase in AUC). Though the performance of 
dependency tree kernel itself is poor (an F-score of 30.03% and an AUC of 56.11% after 
extension), when combined with SPT parse tree kernel, it can help improve the total 
performance (0.68 percentage units’ increase in F-score (52.24-51.56) and 1.14 percentage 
units’ increase in AUC (79.19-78.05)). 
 

 P R F σF AUC σAUC 

Words 42.58 62.9 50.82 2.9 77.69 3.4 
Words + Protein names 
distance 43.65 62.3 51.3 5.4 78.23 3.6 

Words + Protein names 
distance + Keyword 46.32 61.1 52.69 4.9 80.71 4.1 

Table 1. Effectiveness of different features in the feature-based kernel and their 
combinations on AImed 

In addition, as discussed in Section 2.1.1.2, SPT and dependency path tree extensions can 
improve the performance by including richer context information outside SPT and 
dependency path. They together contribute to the improvement of performance by almost 
0.7 percentage units in F-score (52.24-51.52) and 2 percentage units in AUC (79.19-77.24). 

www.intechopen.com



 Biomedical Engineering, Trends, Research and Technologies 

 

590 

 P R F σF AUC σAUC 

SPT 40.09 66.74 50.13 3.2 76.32 2.7 

SPT Extension 42.37 65.8 51.56 3.3 78.05 2.2 

Dependency 18.76 58.33 29.17 3.2 54.37 2.3 

Dependency Extension 20.49 56.18 30.03 3.6 56.11 2.1 

SPT + Dependency 42.29 65.65 51.52 5.1 77.24 2.8 
SPT Extension 
+Dependency Extension 43.71 64.65 52.24 4.8 79.19 2.6 

Table 2. Effectiveness of SPT, dependency tree and their extensions on AImed 

Effectiveness of different kernels  

The performances of different kernels tested on AImed are shown in Table 3. Among the 
four individual kernels, the performance of the graph kernel is the best. As discussed in 
Section 2.1.1.4, the reason is that the graph kernels can treat the parser’s output and word 
features at the same time. The performance of the feature-based kernel ranks second since it 
uses protein names distance and Keyword feature besides words features (otherwise, with 
only words features, its performance (an F-score of 50.82% and an AUC of 77.69%) is worse 
than that of the tree kernel). The performance of the tree kernel is almost the same with that 
of the feature-based kernel.  
 

 P R F σF AUC σAUC 

Feature-based kernel 46.32 61.1 52.69 3.6 80.71 2.7 

BOW(Miwa)   52.8  82.1  

Tree kernel 43.71 64.65 52.24 3.1 79.19 2.6 

Tree kernel(Miwa)   58.2  82.5  

Graph kernel 52.66 64.56 57.20 5.6 83.27 2.8 

Graph kernel(Miwa)   59.5  85.9  

Tree kernel(0.5)+ Feature-based kernel(0.5) 50.44 68.49 58.05 3.3 84.19 2.3 

Tree kernel + BOW (Miwa)   60.5  85.9  

Graph kernel(0.7) +Feature-based kernel(0.3) 51.33 69.58 59.02 4.1 84.68 3.1 

Graph kernel + BOW (Miwa)   57.8  85.2  

Graph kernel(0.7)+ Tree kernel(0.3) 53.43 68.57 59.66 5.8 85.51 3.4 

Tree kernel+ Graph kernel (Miwa)   61.9  87.6  

Feature-based kernel(0.2) 
+ Tree kernel(0.2)+ Graph kernel(0.6) 

57.4 70.75 63.9 4.5 87. 83 2.9 

Tree kernel+ Graph kernel + BOW (Miwa)   60.8  86.8  

Table 3. Effectiveness of different kernels and performance comparison with those of 
Miwa’s method on AImed. The weights of each individual kernel in combined kernels are in 
the parentheses after the kernel name. 

The experimental results show that, when two or more individual kernels are combined, 
better performances are achieved. When the graph kernel is combined with the feature-
based kernel, the performance is improved by 1.82 percentage units in F-score and 1.41 
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percentage units in AUC. When further combined with the tree kernel, the performance is 
improved by 4.88 percentage units in F-score and 3.15 percentage units in AUC. The results 
show that the combined kernel can achieve much better performance than each individual 
kernel. As discussed in Section 2.1.1.4, the different kernels calculate the similarity with 
different aspects between the two sentences and the combination of kernels covers more 
knowledge by introducing more kernels and is effective for PPI extraction.  
The performance comparison between our kernels and those in (Miwa et al., 2009) is also 
made in Table 3. Our feature-based kernel, tree kernel, graph kernel corresponds to the 
BOW, tree kernel, graph kernel in Miwa’s method respectively. The performance of the 
BOW kernel Miwa’s method is almost the same as our feature-based kernel in F-score 
(52.69% to 52.8%). The performance of the tree kernel in Miwa’s method is better than our 
tree kernel (58.2% to 52.4% in F-score and 82.5% to 79.19% in AUC) the reason is that it uses 
the predicate type information to represent the dependency types (Miwa et al., 2009). The 
performance of the graph kernel in Miwa’s method is also better than our graph kernel 
(59.5% to 57.2% in F-score and 85.9% to 83.27% in AUC). The reasons are: First, each word in 
the shortest path has two labels, and the relations in the shortest path are not replaced, but 
duplicated in the first subgraph. Second, the shortest path is calculated by using the 
constituents in the PAS structure. The words in the constituents in the shortest path are 
distinguishably marked as being “in the shortest path” (IP). Finally, the POS information for 
protein name is not attached (Miwa et al., 2009).  
However, different from our results, the combination of kernels in (Miwa et al., 2009) 
doesn’t always contribute to performance improvement. Among their kernels, the graph 
kernel performs best. When it is combined with the tree kernel, the performance is 
improved by 2.4 percentage units in F-score and 1.7 percentage units in AUC. However, 
when further combined with the BOW kernel, the performance drops by 1.1 percentage 
units in F-score and 0.8 percentage units in AUC. In fact, the performance drops when the 
graph kernel itself is combined with the BOW kernel. That shows the introduction of the 
BOW kernel into the graph kernel leads to the deterioration of the performance. Similarly, 
the performance of the hybrid kernel in (Kim et al., 2008) is worse than that of one of the 
individual kernels - the walk kernel. The reason may be that in their methods each kernel is 
assigned the same weight when combined. As discussed in Section 2.1.1.4, we found that 
only when the kernel with better performance is assigned higher weight can the combined 
kernel produce the best result. In our experiments the weights for feature-based kernel, tree 
kernel, and graph kernel are set to 0.6, 0.2, and 0.2 respectively in the order of performance 
rank.  

Performance compared to other methods 

 

Method P R F AUC 

Our: Combined Kernel 57.4 70.75 63.9 87. 83 

Miwa et al., 2008   63.5 87.9 

Miwa et al., 2009 58.7 66.1 61.9 87.6 

Miyao et al., 2009 54.9 65.5 59.5  

Airola et al., 2008 52.9 61.8 56.4 84.8 

Table 4. Comparison on AImed. Precision, recall, F-score and AUC results for methods 
evaluated on AImed. 
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The comparison with relevant results reported in related research is summarized in Table 4. 
The best performing system combines multiple layers of syntactic information by using a 
combination of multiple kernels based on several different parsers and achieves an F-score 
of 63.5% and an AUC of 87.9% (Miwa et al., 2008). Our method uses only the Stanford parser 
output to achieve parse tree, dependency structure (path and graph) information and the 
performance is comparable to the former. This is due to the following three key reasons: 1) 
with feature-based kernel, besides the commonly used word feature, protein names distance 
and Keyword feature are introduced to improve the performance. Especially, the 
introduction of Keyword feature is a way of employing domain knowledge and proves to be 
able to improve the performance effectively. With the appropriate features, feature-based 
kernel performs best among three individual kernels. 2)  the tree kernel can capture the 
structured syntactic connection information between the two entities. Our tree kernel 
combines the information of parse tree and dependency path tree and introduces their 
extensions to capture richer context information outside SPT and dependency path when 
necessary. 3) different kernels calculate the similarity with different aspects between the two 
sentences. Our combined kernel can reduce the danger of missing important features and, 
therefore, produce a new useful similarity measure. Especially, we use a weighted linear 
combination of individual kernel instead of assigning the same weight to each individual 
kernel and experimental result show the introduction of each kernel contributes to the 
performance improvement. 

2.2 Uncertainty sampling based active learning method 

One problem of applying machine learning approaches to PPI extraction is that large 
amounts of data are available but the cost of correctly labeling it prohibits its use. For 
example, MEDLINE is the most authoritative bibliographic database which has covered 
over 17 million references to articles from over 4800 journals, newspapers and magazines 

and updates weekly in the Web of knowledge. On the other hand, though the amount of 
unlabeled data is increasing fast, the existing labeled data can not meet research needs, for 
which people have to tag a lot of samples manually. However, corpus annotation tends to 

be costly and time consuming. People would like to minimize human annotation effort 
while still maintaining desired accuracy.  
To accomplish this, we turned to the uncertainty sampling method of active learning. Active 
learning is a research area in machine learning that features systems that automatically 

select the most informative examples for annotation and training (Angluin, 1988).  
The primary goal of active learning is to reduce the number of examples for annotation that 
the system is trained on, while maintaining the accuracy of the acquired information. It may 

construct their own examples, request certain types of examples, or determine which of a set 
of unsupervised examples are most usefully labeled (Cohn et al., 1994). The last approach is 
particularly attractive in text mining since there is an abundance of data and we would like 
to tag the samples as few as possible (i.e. selecting only the most informative ones for 

tagging). The basic idea is to combine obtaining samples and model, not like passive 
learning which considers each part separately. The method has been applied to text 
classification (McCallum & Nigam, 1998), natural language parsing (Thompson et al., 1999), 

name entity recognition (Shen et al., 2004) and information extraction (Thompson et al., 1999).  
To reduce annotation effort in PPIs from biomedical text, we present an uncertainty 
sampling based method of active learning in a lexical feature-based SVM model. To verify 
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the effectiveness the AImed corpus and the CB corpus (Krallinger et al., 2007) are used and a 
10-fold cross validation is applied. 

2.2.1 Methods 
The process flow of uncertainty sampling based active learning (USAL) method includes 
two stages. Firstly, the corpus is divided into three parts: the initial training set, the 
unlabeled the training set and the test set. Secondly, USAL method is introduced to select 
the most informative samples and add them into training set. The details are described in 
the following sections.  

2.2.1.1 Lexical feature and preprocessing 

The words surrounding the tagged protein names are used as lexical features. We divide 
lexical features into three types: left words, middle words and right words. Left words are 
the words to the left of the first protein name, middle words are the words between the first 
protein name and the second protein name, and right words are the words to the right of the 
second protein name.  
A few preprocessing steps are performed before the lexical feature extraction including 
stopword elimination and stemming. Stopword elimination can reduce the noise, and 
stemming can relieve the sparse problem.  

2.2.1.2 Uncertainty sampling 

Uncertainty sampling (Lewis & Catlett, 1994) is an active learning method. It iteratively 
requests informative examples to label from unlabeled samples. Comparing to random 
sampling which randomly selects samples to label and train, the idea of USAL is that people 
only find the most informative unlabeled samples to tag.  
In our method the “most informative” unlabeled samples are defined as those with the 
lowest absolute value of the predict scores outputted by our lexical feature-based SVM 
model (the lexical features used are discussed in Section 2.2.1.1). We think the smaller a 
sample’s absolute value of the predict score is, the more uncertainty the sample has and, 
therefore, is more informative. Learning begins with a small pool of annotated samples and 
a large pool of unannotated samples. The USAL attempts to choose the most uncertain 
additional samples. The iterative process will not stop until the pool of unlabeled samples is 
empty or any other indicator reaches a threshold.  

2.2.2 Experiment and discussion 

2.2.2.1 Datasets 

One problem in current PPI extraction research is the lack of defined criteria for evaluating 
the PPI systems: researchers develop and test on their own corpus and, therefore, their 
results are not comparable. In our experiments we used two standard datasets: AImed 

corpus and CB corpus. CB corpus is provided by as BioCreAtIvE II (Krallinger et al., 2007) 
challenge evaluation.  
In our experiments, each corpus is divided into three parts. The first part is initial training 

set composed of 400 randomly selected samples, the second is unlabeled training set and the 
third is the test set composed of 400 samples which are also randomly selected.  
We use Precision, Recall, F-score and Accuracy as metrics to evaluate the performance. 
Three group experiments are designed to verify the effectiveness and efficiency of USAL 
method. In the first group USAL is evaluated on using how much of the training set can 
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achieve the best performance; In the second group how much the learning process could be 
accelerated is tested by only considering one of the same uncertainty samples while keeping 
the PPI performance; In the third group a threshold is used to restrict the uncertainty so as 
to further speed up learning process, i.e. samples whose uncertainties are within the 
threshold are picked up to label, and the other samples are ignored.  
During every round in uncertainty sampling, samples selected by the classifier from the 
unlabeled train dataset are added into the initial dataset. In the last round the final actual 
training set is formed. Assuming that e denotes the proportion between the sizes of the 
actual and total training set, the values of Precision, Recall, F-score and Accuracy are 
observed on the test set with increasing e. A 10-fold cross-validation is applied to verify the 
effectiveness of USAL method. 

2.2.2.2 Results and discussion 

First, on AImed dataset, USAL is put up as N=10 and N=100 (N denotes the number of 
samples which are picked up in each round). In each round a prediction is done on the test 
set. As shown in the Fig. 3 and Fig. 4, the performance is steadily improved by increasing 
the amount of training data, and when e=0.6 almost each evaluation metric (Precision, 
Recall, F-score and Accuracy) reaches its optimal value. It shows that labeling cost can be 
reduced by 40% using USAL while the performance doesn’t decline. 
USAL selects the unlabeled samples with most uncertainty to label (i.e. the samples with the 
lowest absolute value of predict scores outputted by our lexical feature-based SVM model), 
adds them into training set and re-trains the SVM model to pick up another N informative 
samples. It is an iterative process that gradually makes the training model rich and perfect. 
As shown in Fig. 3 and Fig. 4, on AImed dataset, no matter how many samples are selected 
in each round, almost each evaluation metric reaches its optimal values as e=0.6. However, 
sometimes the result may decline a little when e is increasing. It is a self-improvement 
process in which the model improves itself constantly.  
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Fig. 3. Performance on AImed dataset when N is set to 10 

From the above discussion, we can draw a conclusion that USAL could reduce the labeling 
cost without sacrificing the PPI performance. Besides, as shown in Fig. 3 and Fig. 4, 
Accuracy is much higher than F-score. By analyzing the result we found that as the number 
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of positive instances is much less than that of negative instances, F-score (which is calculated 
in allusion to the number of positive instances) can not be as high as Accuracy( which is 
calculated in allusion to the number of instances classified correctly including positive and 
negative instances). 
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Fig. 4. Performance on AImed dataset when N is set to 100 

The experiment results on CB dataset are similar to those on AImed dataset: the 
performance is steadily improved by increasing the amount of training data, and when 
e=0.8 almost each evaluation metric reaches its optimal value. It shows that annotation effort 
can be reduced by 20% using USAL. In addition, Accuracy is almost the same as F-score 
since the positive instances are almost as many as the negative instances. 
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Fig. 5. F-score and accuracy comparison when N=100 and N=10 on AImed dataset 

The experiment results on both AImed and CB datasets verify the effectiveness of USAL 
method. In addition, some experiments are designed to verify the effect of accelerating the 
learning process by only considering one of the same uncertainty samples. F100 and A100 
denote F-score and Accuracy when N is set to 100; F10 and A10 denote F-score and 
Accuracy of when N is set to 10. They are compared on AImed and CB datasets respectively. 
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As shown in Fig. 5, the results on AImed dataset show that there is no obvious difference 
between N=10 and N=100 which means that N can be set to a large value to speed up 
learning process with less training time while keeping the performance. The similar result is   
found on CB dataset. 
During the process of USAL, many unlabeled samples have the same uncertainty in each 
round. We only consider one of these samples and the others are ignored. In this way a 
faster learning process could be achieved while still maintaining desired performance. In 
order to further speed up, a threshold is used to restrict the uncertainty. Samples whose 
uncertainties are within the threshold are picked up to tag, and the others are ignored.  
Assuming that the method used in the phase is denoted by f (T, IU) where T is the threshold 
and IU denotes to whether the same uncertainty samples are combined as one. RT (rounds 
of training) is used to measure the speed of learning process. FTS is the number of samples 
in final training set after USAL. The achieved F-score and accuracy of different strategies are 
shown in Table 5. 
 

AImed CB 
f (T, IU) 

RT FTS F A RT FTS F A 

f (∞, False) 32 3626 56.43 79.47 31 3656 84.34 84.23 

f (∞, True) 28 3066 56.22 79.18 28 3042 84.5 84.39 

f (3, True) 21 2411 56.96 79.83 27 2934 84.25 84.12 

f (2, True) 14 1769 55.49 79.34 23 2552 83.44 83.38 

f (1, True) 9 1087 51.4 79.05 12 1456 77.8 77.94 

Table 5. Comparison of different strategies based on four indicators: RT, FTS, F and A. 

In Table 5 f (∞, False) is used as the baseline in which all the training samples are used to 
predict the test set and the samples with same uncertainty are not combined as one. There 
are four group experiments with varying T and IU. Compared with f (∞, False), f (∞, True), 
in which all the training samples are used and the samples with same uncertainty are 
combined as one, reduces 3 RT and more than 600 FTS while maintaining the performance. 
Further, when the threshold T is introduced, f (3, True) reduces 7 RT and more than 600 FTS 
in AImed dataset while it reduces 1 RT and more than 100 FTS in CB dataset. While when T 
is set to smaller values, the performance begins to decline, and when T is set to 1 the 
performance degrades sharply. If T is set to an optimal threshold value (e.g. 2) keeping only 
one sample with the same uncertainty and using a threshold could help to reduce much 
training time with slight loss of performance.  

2.3 Feature coupling generalization method 

Many recent works (Airola et al., 2008; Bunescu et al., 2005a; Miwa et al., 2008; Miyao et al., 
2009) focus on the syntactic-based methods where examples are represented by features or 
kernels derived from the outputs of syntactic parsers.These methods are capable of 
capturing syntactic relationships between entities, and show over 10% better performance 
than lexical features (Miwa et al., 2008; Miyao et al., 2009).  
One could wonder whether methods without using syntactic information can also achieve 
state-of the-art performance or not. In this work, we present a novel feature representation 
method for the PPIE task, which is an application of our recently proposed semi-supervised 
learning strategy – feature coupling generalization (FCG) (Li et al., 2009). The general idea of 
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FCG is to learn a novel feature representation from the co-occurrences of two special types 
of raw features: example-distinguishing features (EDFs) and class-distinguishing features 
(CDFs). EDFs and CDFs refer to strong indictors for examples and for classes respectively. 
Intuitively, their co-occurrences in huge unlabeled data will capture indicative information 
that could not be obtained from labeled training data due to data sparseness. We used this 
method to learn an enriched representation of entity names from 17GB unlabeled 
biomedical texts for a gene named entity classification (NEC) task (Li et al., 2009) and found 
that the new features outperformed elaborately designed lexical features.  
It is natural to think of applying FCG to PPIE as well as the NEC task, since there are huge 
amount of biomedical literatures available online which provide rich unlabeled resources. 
Our primary work here is to design proper EDFs, CDFs and other settings of FCG 
framework for the PPIE task. We also compare the performance of our methods with other 
syntactic-based methods proposed in previous researches on AImed corpus. 

2.3.1 Feature coupling generalization 

2.3.1.1 The general framework 

In short, feature coupling generalization is a framework for creating new features from old 
features (referred to as “prior features” (Li et al., 2009)). We introduced two types of prior 
features: example-distinguishing features (EDFs) and class-distinguishing features (CDFs). 
EDFs are intuitively defined as “strong indicators” for the current examples, and CDFs are 
“strong indicators” for the target classes. The relatedness degree of an EDF fe and a CDF fc 
estimated from the unlabeled data U is defined as feature coupling degree (FCD), denoted 
by FCD (U, fe, fc). The FCG algorithm describes how to convert FCDs into new features. The 
assumptions behind this idea are: 1) the relatedness of an EDF and a CDF provides 
indicative information for classifying the current examples that contains the EDF. 2) Given 
more unlabeled data, more FCDs that cannot be obtained from labeled data can be 
estimated from unlabeled data.  
Assuming that F = {f1, …, fn} is the feature vocabulary of “raw data” that contains every 
Boolean feature one could enumerate to describe an example, and X ⊆ Rn is the vector space 
of the raw data, where each example is represented by a n-dimensional vector x = (x1, …, xn) 
∈ X. The algorithm process of FCG can be summarized as follows:  
1. Select the “example-distinguishing” part of F as EDFs, denoted by E ⊆ F.  
2. Map each element in E to a unique higher-level concept (EDF root) in the set H, denoted 

by root (e): E →H. 
3. Select the “class-distinguishing” part of F as CDFs, denoted by C ⊆ F.  
4. Define the set of FCD types T to measure the relatedness of EDFs and CDFs. 
5. Let the vocabulary of FCD features be H×C×T so that each FCD feature maps a tuple (h, 

c, t), where h ∈ H, c ∈ C, and t ∈ T. 
6. Calculate FCDs from unlabeled data and convert each example from the old 

representation x to a new feature vector x#  by the equation: 

 
( , , )

( )

( , ) * ( , , )i h c t t
root e h

x x band e FCD U e c
=

= = ∑ x# #  (4) 

where e∈E, x̃i ∈ x̃, i indexes each triple (h, c, t) in H×C×T. The operator band(e, x) equals 1 if 
the feature e appears in the example x, and 0 otherwise.  
For simplicity, here we assume that EDFs and CDFs are all extracted from F. In a broader 
sense, we can use the transformed feature set of original data to generate EDFs or CDFs. For 
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example, the “CDF II” used in the NEC task is the combination of local context words by a 
classifier.  In the above algorithm, we assume F contains all the “feasible” combinations of 
original features derived from the data, and all the EDFs and CDFs are limited to be 
generated from this set. 

2.3.1.2 Why it works 

In supervised learning, usually only a subset of elements in F can be utilized. This means 
features that don’t lead to performance improvement are regarded as irrelevant ones which 
are either removed before training or assigned very small weights during training to 
degrade their impact. In FCG framework, we also need to select a subset of F as EDFs or 
CDFs, but the criterion for feature selection is rather different. Here “good“ EDFs or CDFs 
mean the performance of FCD features generated by them is good, although the single 
performances of them might be poor in a supervised setting. In other words, irrelevant 
features in supervised learning may be good EDFs or CDFs that produce indicative FCD 
features, so that FCG could utilize the features discarded by supervised learning. 
 

 

Fig. 6. An example that shows how FCG generates new feature for the PPIE task. Here only 
SP-EDFs are considered, and they are divided into four groups according to different EDF 
roots. A CDF is denoted by cj. Since only one FCD type is used here, the FCD features are 
indexed by the conjunction of EDF roots and CDFs. 

The selection of EDFs and CDFs plays a central part in this framework. We suggested that 
when selecting these features, a trade-off between “indicative” and “informative” should be 
considered (Li et al., 2009). In the NEC task (Li et al., 2009) for determining whether an 
entity is a gene or protein name, the EDFs were selected as the whole entities and boundary 
word-level n-grams, and the CDFs were context patterns (such as “X gene” and “the 
expression of X”) and the discretized scores of a SVM trained by local contexts. The 
experiments show that good results can be achieved when various types of EDFs together 
with hundreds of CDFs are used. We also found that these FCD features performed better in 
non-linear classifiers than linear ones. 
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2.3.2 Methods for protein-protein interaction extraction 

Similar to the research methodology in our previous work (Li et al., 2009), we first designed 
an enhanced lexical feature set considering words and n-grams in specific positions of 
sentences, and then proposed several types of EDFs and CDFs for the PPIE task. We also 
combined lexical features and FCD features to get a higher performance.  

2.3.2.1 Corpus and preprocessing 

We used AImed corpus to examine our methods. We converted each sentence to lowercase, 
replaced XML tags like “&quot;” by their standard ASCII characters, and then tokenized a 
sentence by splitting tokens from non-letter or digit characters, e.g., “wild-type (d)” -> “wild 
- type ( d )”. We replaced the two focus proteins in the current example by “prot1” and 
“prot2”, and the other proteins in the same sentence by “prot0”. We also replaced all the 
examples with overlapping “prot1” and “prot2” (self-interactions) by the same sentence 
“prot1 prot2 .”  
Before introducing lexical features and FCD features, we give some notions that describe 
words, n-grams, areas or positions in sentences with regard to interacting proteins.  
Vocabularies of words: LW = {words in labeled data}, and UW = {words in unlabeled data}. 
Vocabularies of n-grams: LN = {1-3 grams in labeled data}, and UN = {1-3 grams in 
unlabeled data}. 
General areas: GA = {left_area, inner_area, right_area} –text snippets split by “prot1” and 
“prot2” in each sentence denoted by “left_area prot1 inner_area  prot2 right_area”.  
Surrounding areas: SA = {p1_left, p1_right, p2_left, p2_right} – texts surrounding “prot1” or 
“prot2” within a 3-word window.  

Specific positions: SP = SA × {1, 2, 3} = {p1_left_1, p1_left_2, …} –  words or n-grams that 
appear in certain positions of SA. See also the example in Figure 6. 

Cross patterns: CP = {p1_dirction_offset ^ p2_direction_offset ^ distance | direction ∈ {left, 

right}, offset ∈ {1}, distance ∈ {0, 1, 2, 3, 4, 5, (6~7), (8~10), (11~15), (16~20), (21~30), (31~40), 
(40~) } } – “cross-entity” conjunctions of partial elements in SP and the discretized word 
count between the two proteins.  

2.3.2.2 Lexical features 

Note that the lexical features used in the recent works (Miwa et al., 2008; Miyao et al., 2009) 
based on AImed corpus only involved bag-of-words or simple variants. Here we attempt to 
enhance lexical-level representation by incorporating n-gram and position information and 
give a detailed evaluation of the contribution of each feature type. Four types of features are 
investigated in our work:  

Bag-of-words (GA-BOW): features derived from LW×GA, e.g., word_in_left_area 
=”expression”. These features ignore word positions in the current area, which are almost the 
same as features of the baselines used in the works (Miwa et al., 2008; Miyao et al., 2009).  

Bag-of-n-grams (GA-Lex): features from LN×GA. It simply enriches the bag-of-words 
representation by bigrams and trigrams.  

Surrounding n-grams (SA-Lex): features from LN×SA, e.g., p1_right=”interacts with”. They 
are used to highlight n-grams in the “indicating areas” since intuitively features 
surrounding candidate protein pairs are more indicative.  

Specific n-grams (SP-Lex): features from LN×SP, which gives the information of the specific 
distances from protein candidates to n-grams in SA, e.g., p1_right_1=”interacts”, and 
p1_right_2=”with”. It provides more specific information than the “surrounding n-grams”. 
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Our classifier for all the lexical features is SVM light (http://svmlight.joachims.org/) with 
linear kernel and default parameters. 

2.3.2.3 FCD features 

FCD measure and unlabeled data 

In this work, we consider one type of FCD measure: 

 
( )( )

( )( ) ( )( )
10

10 10

log ,
1

log * log

co x y b
FCD

count x b count y b

+
=

+ +
 (5) 

where x is an EDF, y is a CDF, and co(x, y) is the co-occurrence count of x and y. The 
smoothing factor b is assigned 1. We log the term count to avoid highly biased values in 
very large corpus. This measure can be viewed as a variant of pointwise mutual information 
(PMI). We discussed its advantage in our previous work (Li et al., 2009).  
The experimental results in our previous work (Li et al., 2009) show that the performance of 
FCD features increases when more unlabeled data are added. So in this work, we 
downloaded more data, which include all the PubMed abstracts (up to 2009) and data 
collection of TREC genomics track 2006 (Hersh et al., 2006; Li et al., 2009), with the total size 
of 20GB. We tokenized the texts in the same way as the method in Section 2.3.2.1 and tagged 
the protein names using the gene/protein mention tagger developed in our previous work 
(Li et al., 2009). We used the “dictionary-based” method because it is very fast. The method 
for the dictionary construction was also based on FCG and it achieved an F-score of 86.2 on 
BioCreative 2 Gene Mention test corpus (Wilbur et al., 2007). Note that in the PPIE task, 
“unlabeled” means no need to label the protein-protein interactions, but the protein names 
should be recognized first.  

EDF selection 

We examine the performances of two types of EDFs which are also derived from the lexical 
information introduced in Section 2.3.2.1: 

SP-EDF: EDFs derived from UN×SP. It can be viewed as the extension of SP-Lex features to 
the vocabulary of UN. Obviously it has stronger discriminating ability than features derived 
from GA or SA. But the set of EDF roots was selected as SA not SP because SP resulted in 
higher feature dimension and space cost but the performance varied little (not reported in 
this work due to page limitation).  

CP-EDF: text patterns derived from the set UN×CP. The set of EDF roots is CP’ = 

{p1_direction ^ p2_direction ^ distance | direction ∈ {left, right}, distance ∈ {0, 1, 2, 3, 4, 5, 
(6~7), (8~10), (11~15), (16~20), (21~30), (31~40), (40~)}}. One SP-EDF only considers a text 
snippet surrounding one protein, which may limit its discriminating ability, while a CP-EDF 
incorporates information from both sides across “prot1” and “prot2”. 

CDF selection  

The method for generating CDFs is very simple. We used information gain – a popular 
feature selection technique – to rank lexical features introduced in Section 2.3.2.2 and 
selected top 400 ones as CDFs. This idea is similar to our prior wok on named entity 
classification (Li et al., 2009). 
Note that rather different from lexical features, these EDFs and CDFs are not elements of the 
input vectors of the target classifiers. They are used only for generating FCD features which 
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belong to part of the final feature vectors. Figure 6 shows an example of the generation of 
FCD features for the PPIE task, where only SP-EDFs and one type of FCD measure are 
considered, so the FCD features are indexed by the conjunction of EDF roots and CDFs. It 
can be seen clearly that the “sparse” EDFs are “generalized” to a “higher-level” 
representation.  

Classification model 

In the work (Li et al., 2009), we found the density of FCD features was much higher than 
lexical features widely used in NLP and was somewhat like the feature spaces for image 
recognition, which inspired us to make use of non-linear classifiers. We used SVD plus RBF 
kernel and achieved better results than linear kernel. Similarly, for the PPIE task we also 
investigated the two models: linear SVM and RBF kernel based SVM. For the RBF model, we 
first used SVD to get a sub-space of FCD features and then used the new features as the 
inputs of SVM with RBF kernel. In our experiments, SVD was done on the entire AImed 
corpus and top 300 most significant features in left-singular matrix were selected. The 
parameter “-c” and “-g” of SVM light were set at 3.0 and 20.0 respectively. Then we 
combined the prediction scores of lexical features and FCD features given by SVMs using a 
simple weighted linear function, where their weights were set at 0.5 and 0.5 respectively. 

2.3.3 Results and discussion 

2.3.3.1 Evaluation metrics 

We attempt to keep our evaluation metrics as the same as most recent works (Airola et al., 
2008; Miwa et al., 2008; Miyao et al., 2009). We used F-score as the primary evaluation 
measure and also reported AUC. They suggested that for this task, abstract-level cross 
validation should be done to avoid sentences in the same abstract are both used for training 
and testing. We also performed abstract-wise 10-cross validation, where abstracts were 
divided into 10 groups, and one was used for testing and the others for training in each turn. 
We also extracted CDFs from each training data separately to avoid the use of answers in 
testing data at training time. 

2.3.3.2 Lexical features 

 

Features P R F AUC 

F1 41.9 62.8 50.0 78.7 

F1+F2 46.5 61.6 52.1 (+2.1) 80.5 

F1+F2+F3 54.3 61.5 57.2 (+7.2) 83.6 

F1+F2+F3+F4 56.8 63.1 59.0 (+9.0) 84.9 

Table 6. Performance of lexical features. F1: GA-BOW, F2: GA-Lex, F3: SA-Lex, F4: SP-Lex. 

Table 6 shows the performances of various combinations of lexical features. We can see the 
F-score of GA-BOW features is 50.0, which is similar to the results reported in the recent 
work (Miyao et al., 2009), where the F-score of a similar feature set is 51.1. The discrepancy 
may be caused by lemmatization they used, or the detailed methods in data preprocessing 
and splitting stages. It can be seen that features derived from n-grams, surrounding areas 
and specific position information improve the performance significantly and produce a 
surprisingly good result – 59.0 F-score and 84.9 AUC, which is competitive to most of the 
recent works based on syntactic parsing (Airola et al., 2008; Miwa et al., 2008; Miyao et al., 
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2009) (see also Table 8). Note that this run only used simple Boolean lexical features, so it is 
much faster and easier to implement than syntactic based methods, which will make it of 
great value in practice. To our best knowledge, the features (F2, F3, and F4) are not explicitly 
used as Boolean lexical features in the PPIE task and their contribution is not examined well 
on the AImed corpus. The simple idea of creating these lexical features is similar to our 
work on entity classification (Li et al., 2009), just following the cue: “word -> n-grams -> n-
grams in specific positions”. 

2.3.3.3 FCD features 

Table 7 shows the performances of runs with FCD features.  It can be seen that the F-score of 
SP-EDFs is lower than CP-EDFs, possibly because features derived from SP only consider 
specific n-grams surrounding one protein, so they have lower example-discriminating 
ability than CP, thus produce weaker FCD features. However, SP-EDFs yield higher recall 
and seem benefit more from non-linear classifier than CP-EDFs. From Run 2 to Run 5, we 
cannot see the significant advantage of non-linear classifiers, but Run 7 outperforms Run 6 
by near 3 points in F-score, since in our experiments we fixed the parameters of SVD and 
RBF kernels for all the runs, which were tuned to optimize the performance of FCD features 
with both EDFs. So the results also support the fact that RBF kernel performs better for these 
FCD features. In Table 7, we also find that the runs with both the two EDFs (Run 6 and 7) 
produce a further improvement over each single feature (Run 2-5). Note that Run 7 doesn’t 
use any classical features, while its performance is competitive to any single type of features 
proposed by previous researchers.  
 

ID Features (Models) P R F AUC 

1 lexical (linear) 56.8 63.1 59.0 84.9
2 SP-EDF (linear) 43.2 58.1 49.9 76.7
3 SP-EDF (SVD + RBF) 47.9 58.5 51.4 79.8
4 CP-EDF (linear SVM) 49.5 55.9 52.2 80.3
5 CP-EDF (SVD + RBF) 50.1 54.4 52.3 78.6
6 SP+CP EDF (linear) 49.7 62.9 54.2 81.3
7 SP+CP EDF (SVD + RBF) 59.9 57.8 58.1 83.1
8 lexical +FCD (1 + 7) 59.3 68.2 62.9 87.3

Table 7. Performance of FCD features 
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Fig. 7. Relationship between the number of CDFs and the performance of FCD features.  
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It is promising to see that Run 8 (Table 7) that combines the results of lexical and FCD 
features by simple average produces a significant improvement over the lexical features on 
both F-score and AUC, although the baseline is rather strong. The results in Table II have 
proved the success of applying FCG to the PPIE task. However, the improvement of FCD 
features is not as huge as the entity classification task (Li et al., 2009), where the 
improvement is over 6 points in F-score. We think it is mainly because the EDFs and CDFs 
investigated here are relatively simple. For example, only information of words surrounding 
the interacting proteins within a 3-word window is considered in EDFs. Also the EDFs in 
the PPIE task are not so “obvious” as that in the NEC task, since it is more difficult to select 
the “example-distinguishing” part of a sentence concerned with two interacting proteins. In 
addition, the introduction of more types of CDFs would also enhance the performances, 
since in Figure 7, the performance of PPI extraction increases when more CDFs are 
incorporated.  

2.3.3.4 Comparison with other systems 

 

Methods  F AUC 

Our method (Combined) 62.9 87.3 

(Miwa et al., 2008)  
62.7 

(64.3) 
83.2 

(87.9) 

(Miyao et al., 2009)  59.5  

Our method (Lex) 59.0 84.9 

Our method (FCD) 58.1 83.1 

(Airola et al., 2008)  56.4 84.8 

Bag-of-words 50.0 78.7 

Table 8. Comparison with other systems 

For the work in (Miwa et al., 2008), the scores in brackets are their reported results obtained 
by removing all the examples with self-interaction protein pairs in AImed corpus.  
In Table 8, we compare the performances of our methods with other results reported in 
previous researches evaluated on AImed corpus. Although it is difficult to make strict 
comparison due to different methods for data splitting and pre-processing, it can be seen 
that our combined method is among the state-of-the-art systems. It is an important finding 
for both biomedical text mining and NLP community, because unlike other methods, not 
any syntactic information is used in this run. Another interesting finding is that our simple 
lexical features create a strong baseline for other methods to challenge, since it not only 
achieves good results but is much more efficient than syntactic based methods.  
In our previous work (Li et al., 2009), we discussed the efficiency of FCG in real world 
applications. In summary, for real-time application, it needs the support of “feature-level” 
search engine. Alternatively if the task can be divided into non-real-time sub-tasks, we can 
run FCG on each sub-task in an offline manner. For example, in this task, we can generate a 
huge number of lexical patterns indicating for PPI and used FCG to remove noisy patterns. 
Then the refined patterns are used as features integrated into the lexical feature-based 
method (Section 2.3.2.2). The idea is similar to the dictionary construction for the NER task 
(Li et al., 2009). In this way, we can both utilize the information from unlabeled data and 
make the system efficient. 
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3. Conclusions 

In this chapter, three different protein-protein interactions extraction approaches 
representing the state-of-the-art research in this area are introduced. 
Firstly, we present a multiple kernels learning based approach to extracting protein-protein 
interactions from biomedical literature. The approach combines feature-based kernel, tree 
kernel, and graph kernel with different weights and achieves much better performance than 
each individual kernel. This indicates that the features in individual kernels are 
complementary and the combined kernel can well integrate them: 1) the flat entity 
information captured by the feature-based kernel; 2) the structured syntactic connection 
information between the two entities captured by the tree kernel, graph kernel and POS 
path kernel.  
Secondly, we present a lexical feature-based SVM model to extract PPI information from 
biomedical literature. During the supervised learning process, to reduce annotation effort 
while maintaining the PPI extraction performance, we employ an uncertainty sampling 
based method of active learning to tag the most informative unlabeled samples. The 
experiment results show that our method can reduce the labeling cost by 40% and 20% on 
the two corpora respectively without degrading the performance. In addition, the number of 
samples picked up in each round can be set to a large value to speed up learning process. 
Besides, to further accelerate USAL process, our method only reserves one of the same 
uncertainty samples. To further speed up learning process, a threshold is used to restrict the 
uncertainty. The samples whose uncertainties are within the threshold are picked up to tag, 
and the other samples are ignored. The experiment results show these methods reduce 
much annotation effort and training time with slight loss of performance. 
Finally, we present the application of FCG semi-supervised learning strategy to the PPI 
extraction task and show that FCD features derived from simple lexical information can 
achieve good results and produce further improvement over a high baseline.  
Currently, PPI extraction methods generate poorer results compared with other domains 
such as newswire and there is still much room for performance improvement. In the future 
work, we will focus on designing EDFs and CDFs that cover more lexical or linguistic 
information (e.g., from shallow or syntactic parsing) of the whole sentences. Since many 
experiments show that FCD features perform well in non-linear classifiers, we will examine 
other popular learning techniques in pattern recognition. It is encouraging to see that FCG 
can perform well in the two different NLP tasks: entity classification and relation extraction, 
so we will continuously examine this method in more tasks on natural language processing 
and machine learning. In addition, as discussed in Section 2.1.2.2, introducing more domain 
knowledge such as protein-protein interactions ontology into PPI extraction from 
biomedical literature may help address the emerging challenges of deep natural language 
understanding. 
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