59 research outputs found

    Regulation of AKT phosphorylation at Ser473 and Thr308 by endoplasmic reticulum stress modulates substrate specificity in a severity dependent manner.

    Get PDF
    Endoplasmic reticulum (ER) stress is a common factor in the pathophysiology of diverse human diseases that are characterised by contrasting cellular behaviours, from proliferation in cancer to apoptosis in neurodegenerative disorders. Coincidently, dysregulation of AKT/PKB activity, which is the central regulator of cell growth, proliferation and survival, is often associated with the same diseases. Here, we demonstrate that ER stress modulates AKT substrate specificity in a severity-dependent manner, as shown by phospho-specific antibodies against known AKT targets. ER stress also reduces both total and phosphorylated AKT in a severity-dependent manner, without affecting activity of the upstream kinase PDK1. Normalisation to total AKT revealed that under ER stress phosphorylation of Thr308 is suppressed while that of Ser473 is increased. ER stress induces GRP78, and siRNA-mediated knock-down of GRP78 enhances phosphorylation at Ser473 by 3.6 fold, but not at Thr308. Substrate specificity is again altered. An in-situ proximity ligation assay revealed a physical interaction between GRP78 and AKT at the plasma membrane of cells following induction of ER stress. Staining was weak in cells with normal nuclear morphology but stronger in those displaying rounded, condensed nuclei. Co-immunoprecipitation of GRP78 and P-AKT(Ser473) confirmed the immuno-complex consists of non-phosphorylated AKT (Ser473 and Thr308). The interaction is likely specific as AKT did not bind to all molecular chaperones, and GRP78 did not bind to p70 S6 kinase. These findings provide one mechanistic explanation for how ER stress contributes to human pathologies demonstrating contrasting cell fates via modulation of AKT signalling

    Morphological and molecular changes in the murine placenta exposed to normobaric hypoxia throughout pregnancy.

    Get PDF
    Chronic hypoxia is a common complication of pregnancy, arising through malperfusion of the placenta or pregnancy at high altitude. The present study investigated the effects of hypoxia on the growth of the placenta, which is the organ that interfaces between the mother and her fetus. Mice were housed in an hypoxic environment for the whole of gestation. An atmosphere of 13% oxygen induced fetal growth restriction (1182 ± 9 mg, n = 90 vs. 1044 ± 11 mg, n = 62, P < 0.05) but enhanced placental weight (907 ± 11 mg, n = 90 vs. 998 ± 15 mg, n = 62,P < 0.05). Stereological analyses revealed an increase in the volume of maternal blood spaces in the placenta, consistent with increased flow. At the molecular level, we observed activation of the protein kinase B (Akt)-mechanistic target of rapamycin growth and proliferation pathway. Chronic hypoxia also triggered mild endoplasmic reticulum stress, a conserved homeostatic response that mediates translational arrest through phosphorylation of eukaryotic initiation factor 2 subunit α. Surprisingly, although subunits of the mitochondrial electron transport chain complexes were reduced at the protein level, there was no evidence of intracellular energy depletion. Finally, we demonstrated sex-specific placental responses to chronic hypoxia. Placentas from male fetuses were heavier (1082 ± 2 mg, n = 30 vs. 928 ± 2 mg, n = 34, P < 0.05) and less susceptible to hypoxia-induced oxidative stress than those from females. Their capacity to adapt may explain why male fetuses were significantly less growth restricted at embryonic day 18.5 than their female counterparts. These findings are consistent with the concept that male fetuses are more aggressive with respect to their nutrient demands, which may place them at greater risk of adverse outcomes under limiting conditions.This study was supported by a grant from the Wellcome Trust (084804/2/08/Z).This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1113/JP27107

    Placental endoplasmic reticulum stress negatively regulates transcription of placental growth factor via ATF4 and ATF6β: implications for the pathophysiology of human pregnancy complications.

    Get PDF
    Low maternal circulating concentrations of placental growth factor (PlGF) are one of the hallmarks of human pregnancy complications, including fetal growth restriction (FGR) and early-onset pre-eclampsia (PE). Currently, PlGF is used clinically with other biomarkers to screen for high-risk cases, although the mechanisms underlying its regulation are largely unknown. Placental endoplasmic reticulum (ER) stress has recently been found to be elevated in cases of FGR, and to an even greater extent in early-onset PE complicated with FGR. ER stress activates the unfolded protein response (UPR); attenuation of protein translation and a reduction in cell growth and proliferation play crucial roles in the pathophysiology of these complications of pregnancy. In this study, we further identified that ER stress regulates release of PlGF. We first observed that down-regulation of PlGF protein was associated with nuclear localization of ATF4, ATF6α and ATF6β in the syncytiotrophoblast of placentae from PE patients. Transcript analysis showed a decrease of PlGF mRNA, and an increase from genes encoding those UPR transcription factors in placentae from cases of early-onset PE, but not of late-onset (>34 weeks) PE, compared to term controls. Further investigations indicated a strong correlation between ATF4 and PlGF mRNA levels only (r = - 0.73, p < 0.05). These results could be recapitulated in trophoblast-like cells exposed to chemical inducers of ER stress or hypoxia-reoxygenation. The stability of PlGF transcripts was unchanged. The use of small interfering RNA specific for transcription factors in the UPR pathways revealed that ATF4 and ATF6β, but not ATF6α, modulate PlGF transcription. To conclude, ATF4 and ATF6β act synergistically in the negative regulation of PlGF mRNA expression, resulting in reduced PlGF secretion by the trophoblast in response to stress. Therefore, these results further support the targeting of placental ER stress as a potential new therapeutic intervention for these pregnancy complications.This study was supported by a grant from The Wellcome Trust (084804/2/08/Z).This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/path.467

    Placental endoplasmic reticulum stress in gestational diabetes: the potential for therapeutic intervention with chemical chaperones and antioxidants.

    Get PDF
    AIMS/HYPOTHESIS: The aim of this work was to determine whether placental endoplasmic reticulum (ER) stress may contribute to the pathophysiology of gestational diabetes mellitus (GDM) and to test the efficacy of chemical chaperones and antioxidant vitamins in ameliorating that stress in a trophoblast-like cell line in vitro. METHODS: Placental samples were obtained from women suffering from GDM and from normoglycaemic controls and were frozen immediately. Women with GDM had 2 h serum glucose levels > 9.0 mmol/l following a 75 g oral glucose tolerance test and were treated with diet and insulin when necessary. Western blotting was used to assess markers of ER stress. To test the effects of hyperglycaemia on the generation of ER stress, a new trophoblast-like cell line, BeWo-NG, was generated by culturing in a physiological glucose concentration of 5.5 mmol/l (over 20 passages) before challenging with 10 or 20 mmol/l glucose. RESULTS: All GDM patients were well-controlled (HbA1c 5.86 ± 0.55% or 40.64 ± 5.85 mmol/mol, n = 11). Low-grade ER stress was observed in the placental samples, with dilation of ER cisternae and increased phosphorylation of eukaryotic initiation factor 2 subunit α. Challenge of BeWo-NG with high glucose activated the same pathways, but this was as a result of acidosis of the culture medium rather than the glucose concentration per se. Addition of chemical chaperones 4-phenylbutyrate and tauroursodeoxycholic acid and vitamins C and E ameliorated the ER stress. CONCLUSIONS/INTERPRETATION: This is the first report of placental ER stress in GDM patients. Chemical chaperones and antioxidant vitamins represent potential therapeutic interventions for GDM.This study was supported by a grant from the Wellcome Trust (084804/2/08/Z). TE-B was supported by a Newton Advanced Fellowship awarded to TE-B and GJB from the Academy of Medical Sciences, and by the Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00125-016-4040-

    Defective folate metabolism causes germline epigenetic instability and distinguishes Hira as a phenotype inheritance biomarker.

    Get PDF
    The mechanism behind transgenerational epigenetic inheritance is unclear, particularly through the maternal grandparental line. We previously showed that disruption of folate metabolism in mice by the Mtrr hypomorphic mutation results in transgenerational epigenetic inheritance of congenital malformations. Either maternal grandparent can initiate this phenomenon, which persists for at least four wildtype generations. Here, we use genome-wide approaches to reveal genetic stability in the Mtrr model and genome-wide differential DNA methylation in the germline of Mtrr mutant maternal grandfathers. We observe that, while epigenetic reprogramming occurs, wildtype grandprogeny and great grandprogeny exhibit transcriptional changes that correlate with germline methylation defects. One region encompasses the Hira gene, which is misexpressed in embryos for at least three wildtype generations in a manner that distinguishes Hira transcript expression as a biomarker of maternal phenotypic inheritance

    Endoplasmic reticulum stress disrupts placental morphogenesis: implications for human intrauterine growth restriction.

    Get PDF
    We recently reported the first evidence of placental endoplasmic reticulum (ER) stress in the pathophysiology of human intrauterine growth restriction. Here, we used a mouse model to investigate potential underlying mechanisms. Eif2s1(tm1RjK) mice, in which Ser51 of eukaryotic initiation factor 2 subunit alpha (eIF2α) is mutated, display a 30% increase in basal translation. In Eif2s1(tm1RjK) placentas, we observed increased ER stress and anomalous accumulation of glycoproteins in the endocrine junctional zone (Jz), but not in the labyrinthine zone where physiological exchange occurs. Placental and fetal weights were reduced by 15% (97 mg to 82 mg, p < 0.001) and 20% (1009 mg to 798 mg, p < 0.001), respectively. To investigate whether ER stress affects bioactivity of secreted proteins, mouse embryonic fibroblasts (MEFs) were derived from Eif2s1(tm1RjK) mutants. These MEFs exhibited ER stress, grew 50% slower, and showed reduced Akt-mTOR signalling compared to wild-type cells. Conditioned medium (CM) derived from Eif2s1(tm1RjK) MEFs failed to maintain trophoblast stem cells in a progenitor state, but the effect could be rescued by exogenous application of FGF4 and heparin. In addition, ER stress promoted accumulation of pro-Igf2 with altered glycosylation in the CM without affecting cellular levels, indicating that the protein failed to be processed after release. Igf2 is the major growth factor for placental development; indeed, activity in the Pdk1-Akt-mTOR pathways was decreased in Eif2s1(tm1RjK) placentas, indicating loss of Igf2 signalling. Furthermore, we observed premature differentiation of trophoblast progenitors at E9.5 in mutant placentas, consistent with the in vitro results and with the disproportionate development of the labyrinth and Jz seen in placentas at E18.5. Similar disproportion has been reported in the Igf2-null mouse. These results demonstrate that ER stress adversely affects placental development, and that modulation of post-translational processing, and hence bioactivity, of secreted growth factors contributes to this effect. Placental dysmorphogenesis potentially affects fetal growth through reduced exchange capacity

    RNA-Seq reveals changes in human placental metabolism, transport and endocrinology across the first-second trimester transition.

    Get PDF
    The human placenta is exposed to major environmental changes towards the end of the first trimester associated with full onset of the maternal arterial placental circulation. Changes include a switch from histotrophic to hemotrophic nutrition, and a threefold rise in the intraplacental oxygen concentration. We evaluated their impact on trophoblast development and function using RNA-sequencing (RNA-Seq) and DNA-methylation analyses performed on the same chorionic villous samples at 7-8 (n=8) and 13-14 (n=6) weeks of gestation. Reads were adjusted for fetal sex. Most DEGs were associated with protein processing in the endoplasmic reticulum (ER), hormone secretion, transport, extracellular matrix, vasculogenesis, and reactive oxygen species metabolism. Transcripts higher in the first trimester were associated with synthesis and ER processing of peptide hormones, and glycolytic pathways. Transcripts encoding proteins mediating transport of oxygen, lipids, protein, glucose, and ions were significantly increased in the second trimester. The motifs of CBX3 and BCL6 were significantly overrepresented, indicating the involvement of these transcription factor networks in the regulation of trophoblast migration, proliferation and fusion. These findings are consistent with a high level of cell proliferation and hormone secretion by the early placenta to secure implantation in a physiological low-oxygen environment

    RNA-Seq reveals changes in human placental metabolism, transport and endocrinology across the first-second trimester transition.

    Get PDF
    The human placenta is exposed to major environmental changes towards the end of the first trimester associated with full onset of the maternal arterial placental circulation. Changes include a switch from histotrophic to hemotrophic nutrition, and a threefold rise in the intraplacental oxygen concentration. We evaluated their impact on trophoblast development and function using RNA-sequencing (RNA-Seq) and DNA-methylation analyses performed on the same chorionic villous samples at 7-8 (n=8) and 13-14 (n=6) weeks of gestation. Reads were adjusted for fetal sex. Most DEGs were associated with protein processing in the endoplasmic reticulum (ER), hormone secretion, transport, extracellular matrix, vasculogenesis, and reactive oxygen species metabolism. Transcripts higher in the first trimester were associated with synthesis and ER processing of peptide hormones, and glycolytic pathways. Transcripts encoding proteins mediating transport of oxygen, lipids, protein, glucose, and ions were significantly increased in the second trimester. The motifs of CBX3 and BCL6 were significantly overrepresented, indicating the involvement of these transcription factor networks in the regulation of trophoblast migration, proliferation and fusion. These findings are consistent with a high level of cell proliferation and hormone secretion by the early placenta to secure implantation in a physiological low-oxygen environment
    corecore