366 research outputs found

    Correlation between Pineal Activation and Religious Meditation Observed by Functional Magnetic Resonance Imaging

    Get PDF
    The human brain possesses plenty of functions but little is known about its scientific relationship with mind and spirit. Conferences^1,2^ focused on the connection between science and religion were held very recently in which neuroscientists, Buddhist scholars and Dalai Lama discussed attention, mental imagery, emotion, mind, brain functions and meditation, suggesting religious meditation offers an effective means to investigate the mystery of mind and spirit. In the past decade, scientists struggled to obtain brain mappings for various meditation styles using different brain imaging techniques and stimulating results have been observed^3-17^. In this letter we report that, together with other brain regions, pineal body exhibit significant activation during meditation process, supporting the long lasting speculation that pineal plays an important role in the intrinsic awareness which might concern spirit or soul. Pineal is known as an endocrine organ which produces substrates including melatonin and has been ascribed numerous even mysterious functions but its activation during meditation has never been observed by brain imaging technique. In seventeenth century, based on anatomic observation, Descartes ventured to suggest that pineal serves as the principal seat of the soul^18-20^. Inspired by its geometric center in the brain, physiologists, psychologists, philosophers and religionists have been speculating for centuries about pineal's function relevant to spirit and soul. In this study, we chose Chinese Original Quiet Sitting, one style of meditation, to explore this long lasting speculation by functional magnetic resonance imaging technique. Our results demonstrate a correlation between pineal activation and religious meditation which might have profound implications in physiological understanding of the intrinsic awareness

    Self‐potential ambient noise and spectral relationship with urbanization, seismicity, and strain rate revealed via the Taiwan Geoelectric Monitoring Network

    Get PDF
    AbstractGeoelectric self‐potential (SP) signals are sensitive to natural and anthropogenic factors. The SP spectral characteristics under the different factors in Taiwan were investigated, and the SP spectral scalings were correlated with urbanization level, seismicity, and crustal deformation. The ambient SP noise models were first established by estimating the probability density functions of the spectrograms at each frequency. The effects of the natural and anthropogenic factors on the SP signals are understood by comparing the SP noise models under various conditions, such as precipitation, urbanization, and electric trains. Results show that the SP signals in areas of high industrialization and human activity and areas close to train stations behave as white noises and exhibit a distinct spectral ripple at frequencies around 1 Hz. On the other hand, the SP spectral power law parameters, Gutenberg‐Richter b values, and dilation strain rates were estimated by using the SP, earthquake catalog, and GPS data, respectively, during 2012–2017. By investigating the correlations of the SP spectral parameters with the Gutenberg‐Richter b value, dilation strain rates, and urbanization level, the SP optimal frequency band is found between 0.006 and 1 Hz due to the high correlation between the SP and seismicity data and between the SP and dilation data and the low correlation between the SP and urbanization data. Hence, this study may help the filtering and screening of the SP data and facilitate the understanding of the mechano‐electric behavior in the crust

    Lasing on nonlinear localized waves in curved geometry

    Get PDF
    The use of geometrical constraints opens many new perspectives in photonics and in fundamental studies of nonlinear waves. By implementing surface structures in vertical cavity surface emitting lasers as manifolds for curved space, we experimentally study the impacts of geometrical constraints on nonlinear wave localization. We observe localized waves pinned to the maximal curvature in an elliptical-ring, and confirm the reduction in the localization length of waves by measuring near and far field patterns, as well as the corresponding dispersion relation. Theoretically, analyses based on a dissipative model with a parabola curve give good agreement remarkably to experimental measurement on the transition from delocalized to localized waves. The introduction of curved geometry allows to control and design lasing modes in the nonlinear regime.Comment: 6 pages, 6 figure

    Commensurate lock-in and incommensurate supersolid phases of hardcore bosons on anisotropic triangular lattices

    Get PDF
    We investigate the interplay between commensurate lock-in and incommensurate supersolid phases of the hardcore bosons at half-filling with anisotropic nearest-neighbor hopping and repulsive interactions on triangular lattice. We use numerical quantum and variational Monte Carlo as well as analytical Schwinger boson mean-field analysis to establish the ground states and phase diagram. It is shown that, for finite size systems, there exist a series of jumps between different supersolid phases as the anisotropy parameter is changed. The density ordering wavevectors are locked to commensurate values and jump between adjacent supersolids. In the thermodynamic limit, however, the magnitude of these jumps vanishes leading to a continuous set of novel incommensurate supersoild phases.Comment: 5 pages, 5 figures, added new results, changed title and conclusio

    Mobile Edge Computing Platform Deployment in 4G LTE Networks: A Middlebox Approach

    Get PDF
    This paper has been presented at : USENIX Workshop on Hot Topics in Edge Computing (Hot Edge '18)Low-latency demands for cellular networks have at-tracted much attention. Mobile edge computing (MEC), which deploys a cloud computing platform at the edge closer to mobile users, has been introduced as an enabler of low-latency performance in 4G and 5G networks. In this paper, we propose an MEC platform deployment so-lution in 4G LTE networks using a middlebox approach. It is standard-compliant and transparent to existing cel-lular network components, so they need not be modiïŹed. The MEC middlebox sits on the S1 interface, which con-nects an LTE base station to its core network, and does trafïŹc ïŹltering, manipulation and forwarding. It enables the MEC service for mobile users by hosting application servers. Such middlebox approach can save deployment cost and be easy to install. It is different from other stud-ies that require modiïŹcations on base stations or/and core networks. We have conïŹrmed its viability through a pro-totype based on the OpenAirInterface cellular platform.We thank our shepherd Weisong Shi for his help, and also thank the anonymous reviewers for their valuable comments on improving this paper. This work was partially supported by the Ministry of Science and Technology, Taiwan, under grant numbers 106-2622-8-009-017 and 106-2218-E-009-018, and by the H2020 collaborative Europe/Taiwan research project 5G-CORAL (grant number 761586)

    Epilepsy and Neurodevelopmental Outcomes in Children With Etiologically Diagnosed Central Nervous System Infections: A Retrospective Cohort Study

    Get PDF
    Background: Central nervous system (CNS) infection in childhood can lead to neurological sequelae, including epilepsy, and neurodevelopmental disorders, such as attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). This study investigated the association of etiologically diagnosed childhood brain infections with the subsequent risks of epilepsy and neurodevelopmental disorders.Objectives: We retrospectively analyzed the data of children aged <18 years who had definite brain infections with positive cerebrospinal fluid cultures from January 1, 2005, to December 31, 2017. These patients were followed to evaluate the risks of epilepsy and neurodevelopmental disease (ADHD and ASD) after brain infections (group 1) in comparison with the risks in those without brain infections (group 2).Results: A total of 145 patients with an average age of 41.2 months were included in group 1. Enterovirus accounted for the majority of infections, followed by group B Streptococcus, S. pneumoniae, and herpes simplex virus. A total of 292 patients with an average age of 44.8 months were included in group 2. The 12-year risk of epilepsy in group 1 was 10.7 (95% confidence interval [CI], 2.30–49; p < 0.01). Compared with group 2 (reference), the risk of ASD in the age interval of 2–5 years in group 1 was 21.3 (95% CI, 1.33–341.4; p = 0.03). The incidence of ADHD in group 1 was not significantly higher than that in group 2.Conclusions: This study identified the common etiological causes of brain infections in Taiwanese children. The highest-risk neurodevelopmental sequelae associated with brain infections was epilepsy. Children who had a diagnosis of brain infection (specially Enterovirus) should be followed since they are at greater risk of developing epilepsy and ASD

    Geological Study of Active Cold Seeps in the Syn-collision Accretionary Prism Kaoping Slope off SW Taiwan

    Full text link
    Pogonophoran tube worms, elongated pyrite tubes and authigenic carbonate nodules are used to evaluate the occurrence of potential cold seeps in the syn-collision accretionary prism Kaoping Slope off SW Taiwan. At least two species of pogonophoran tubeworms were found in surface and core sediments. Pyrites occur in three different forms: fillings inside foraminiferal chambers, cements between calcareous microfossils, and elongated tubes. The bottom water off SW Taiwan is aerobic, but authigenic pyrites are found in the surface sediments at several sites, suggesting the existence of local reducing environments enabling the formation of pyrites. These environments are most likely caused by the occurrence of active cold seeps where methane expulses. Authigenic carbonates with highly depleted carbon isotope values (-54 to -43ù°) were found at more than 5 locations, in agreement with a methane-derived source for the carbon

    Clonal dissemination of the multi-drug resistant Salmonella enterica serovar Braenderup, but not the serovar Bareilly, of prevalent serogroup C1 Salmonella from Taiwan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nontyphoidal <it>Salmonella </it>is the main cause of human salmonellosis. In order to study the prevalent serogroups and serovars of clinical isolates in Taiwan, 8931 <it>Salmonellae </it>isolates were collected from 19 medical centers and district hospitals throughout the country from 2004 to 2007. The pulsed-field eletrophoresis types (PFGE) and antibiotic resistance profiles of <it>Salmonella enterica </it>serovars Bareilly (<it>S</it>. Bareilly) and Braenderup (<it>S</it>. Braenderup) were compared, and multi-drug resistance (MDR) plasmids were characterized.</p> <p>Results</p> <p>Over 95% of human salmonellosis in Taiwan was caused by five <it>Salmonella </it>serogroups: B, C1, C2-C3, D1, and E1. <it>S</it>. Typhymurium, <it>S</it>. Enteritidis, <it>S</it>. Stanley and <it>S</it>. Newport were the four most prevalent serovars, accounting for about 64% of isolates. While only one or two major serovars from four of the most prevalent serogroups were represented, four predominant serovars were found in serogroup C1 <it>Salmonellae</it>. The prevalence was decreasing for <it>S</it>. Choleraeuis and <it>S</it>. Braenderup, and S. Virchow and increasing for <it>S</it>. Bareilly. <it>S</it>. Braenderup mainly caused gastroenteritis in children; in contrast, <it>S</it>. Bareiley infected children and elderly people. Both serovars differed by <it>Xba</it>I-PFGE patterns. Almost all <it>S</it>. Bareilly isolates were susceptible to antibiotics of interest, while all lacked plasmids and belonged to one clone. Two distinct major clones in <it>S</it>. Braenderup were cluster A, mainly including MDR isolates with large MDR plasmid from North Taiwan, and cluster B, mainly containing susceptible isolates without R plasmid from South Taiwan. In cluster A, there were two types of conjugative R plasmids with sizes ranging from 75 to 130 kb. Type 1 plasmids consisted of replicons F1A/F1B, <it>bla</it><sub>TEM</sub>, IS<it>26</it>, and a class 1 integron with the genes <it>dfrA12</it>-<it>orfF</it>-<it>aadA2-qacE</it>Δ1-<it>sulI</it>. Type 2 plasmids belonged to incompatibility group Inc<it>I</it>, contained <it>tnpA</it>-<it>bla</it><sub>CMY-2</sub>-<it>blc</it>-<it>sugE </it>genetic structures and lacked both IS<it>26 </it>and class 1 integrons. Although type 2 plasmids showed higher conjugation capability, type 1 plasmids were the predominant plasmid.</p> <p>Conclusions</p> <p>Serogroups B, C1, C2-C3, D1, and E1 of <it>Salmonella </it>caused over 95% of human salmonellosis. Two prevalent serovars within serogroup C1, <it>S</it>. Bareilly and cluster B of S. Braenderup, were clonal and drug-susceptible. However, cluster A of <it>S</it>. Braenderup was MDR and probably derived from susceptible isolates by acquiring one of two distinct conjugative R plasmids.</p
    • 

    corecore