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We investigate the interplay between commensurate lock-in and incommensurate supersolid phases
of the hardcore bosons at half-filling with anisotropic nearest-neighbor hopping and repulsive inter-
actions on triangular lattice. We use numerical quantum and variational Monte Carlo as well as
analytical Schwinger boson mean-field analysis to establish the ground states and phase diagram.
It is shown that, for finite size systems, there exist a series of jumps between different supersolid
phases as the anisotropy parameter is changed. The density ordering wavevectors are locked to
commensurate values and jump between adjacent supersolids. In the thermodynamic limit, how-
ever, the magnitude of these jumps vanishes leading to a continuous set of novel incommensurate
supersoild phases.

PACS numbers: 05.30.Jp, 67.40.-w, 75.40.Mg, 75.10.Jm

Introduction.— Supersolid phases with coexisting long-
range diagonal and off-diagonal orders have long been
recognized as interesting conceivable ground states of su-
perfluid systems in the presence of mobile vacancies [1].
Recent experiments have also reported possible evidence
for such a state in 4He [2]. Another, relatively new,
route to supersolid phases has recently been explored in
the hardcore boson models on frustrated two-dimensional
(2D) lattices [3, 4]. In such lattices, supersolid phases
may arise due to intricate competition between kinetic
and interaction energies, and as a result present an ex-
cellent playground for discovery of possible novel univer-
sality classes of quantum phase transitions [5, 6]. Further
interest in these systems stems from potential realization
of these models in ultracold atomic systems on optical
lattices [7].

The diagonal (density) orders of the supersolid phases
discovered so far have been restricted to commensurate
orders. For example, a commensurate supersolid was dis-
covered for the hardcore bosons on the isotropic trian-
gular lattice [3] with the density ordering wave vector
Q0 = (4π/3, 0) along with non-vanishing superfluid or-
der parameter [3]. A qualitative understanding of such
a supersolid state can be obtained by considering the
deviation from a commensurate boson filling fraction at
which the ground state is a perfect Mott crystal with a
long-range diagonal order. The additional particles or
holes resulting from such a deviation condense to pro-
duce a superfluid while retaining the backbone of the
existing Mott solid. This leads to the coexistence of off-
diagonal (superfluid) and diagonal (Mott) orders. One
may expect that incommensurate version of the super-
solid phases may arise when there are more than one

competing interactions or length scales in the system. If
such a phase exists in lattice models, this may be a much
closer analog of the supersolid phases originally proposed
for the continuum.

In this letter, we investigate possible presence of in-
commensurate supersolid phases of the hardcore bosons
at half-filling with anisotropic nearest-neighbor hopping
and repulsive interactions on triangular lattices. We es-
tablish the ground states and phase diagram using several
different and complementary methods, namely numerical
quantum and variational Monte Carlo (QMC) techniques
as well as analytical Schwinger-Boson mean-field theory.
It is found that, for finite size systems, there exist a series
of jumps between different supersolid phases as a func-
tion of the anisotropy parameter. The (density) ordering
wavevectors of these phases are pinned to commensurate
values and jump upon entering a nearby supersolid phase.
The ordering wavevectors assume every single commen-
surate values for an interval of the anisotropy parameters.
In the thermodynamic limit, however, we find that these
ordering wavevectors become a continuous function of
the anisotropy parameter, leading to a continuous set of
incommensurate supersolids. We emphasize that such a
continuous set of supersolid orders represent exciting dis-
covery of novel quantum structures that have not been
seen in previous studies of lattice boson systems.

Lattice Model.— We begin with the following hardcore
boson model on an anisotropic triangular lattice.

Hb =
∑

〈i,j〉

[

−tij(b
†
i bj + H.c.) + Vijninj

]

− µ
∑

i

ni, (1)

where bi denotes the boson annihilation operator at site
i and 〈ij〉 runs over the nearest-neighbor sites. The
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FIG. 1: The superfluid density along a2 as a function of the
anisotropy parameter η for different system sizes and temper-
atures with V1/t1 = 10. The inset shows a similar plot for the
superfluid density along a1. Lines are guides to the eye. The
number of steps for L = 12, 24, 48, 96 are 3, 5, 9, 17, respec-
tively. The number of jumps between adjacent steps is hence
2, 4, 8, 16, respectively.

hopping tij and repulsive interaction Vij are given by
tij = t1(Vij = V1) and tij = t2(Vij = V2) for the nearest-
neighbor sites along the diagonal and horizontal bonds of
a triangular lattice (if it is viewed as a square lattice with
one additional diagonal bond per each plaquette). Here
we shall fix the anisotropy parameter η = t2/t1 = V2/V1.
For η = 1, the model reduces to the well-known isotropic-
triangular-lattice model. Such a hardcore boson model
is also equivalent to an anisotropic spin-1/2 XXZ model
via the well-known Holstein-Primakoff mapping [3].

In the isotropic case, the classical limit of this model
(t1,2 = 0) has an extensive ground state degeneracy and
power-law density-density correlations (or Sz-Sz corre-
lator in the XXZ model) at zero temperature [8]. The
ground state degeneracy at the isotropic point is com-
pletely lifted for η < 1 and the system orders at Q1 =
(π, π). On the contrary, the degeneracy is only partially
lifted for η > 1. Here each diagonal chain is ordered an-
tiferromagnetically at Q2 = (π, 0) but the chains can be
shifted with respect to each other giving rise to 2L ground
states, where L is the linear system size. We expect the
first (second) type of ordering in the quantum model for
η ≪ (≫)1 and call these phases solid I(II) for future
reference. For the quantum model, when t1,2 is turned
on, it is well-known that the system exhibits a supersolid
phase at η = 1 and large enough values of V1/t1 [3]. The
key point which we want to address in this paper is the
fate of the supersolid phase when η 6= 1.

Quantum Monte Carlo.— To address this problem, we
perform QMC simulations using a plaquette generaliza-
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FIG. 2: The equal time structure factor S(Q(η)) at the or-
dering wavevector Q(η) as a function of η for different system
sizes and temperatures. All other parameters are the same as
in Fig. 1. Judging from the size dependence of the data, the
structure factor is clearly finite in the thermodynamic limit.

tion [9] of the Stochastic Series expansion (SSE) algo-
rithm [10], where the elementary lattice unit is a tri-
angle; this results in improved efficiency for large val-
ues of V1/t1. We measure the superfluid density along
the diagonal (a2) and horizontal (a1) lattice directions
by measuring the corresponding winding numbers W 2

ai

[11]: ρs1(2) = W 2
a1(2)

/βt1, where β is the inverse tem-

perature. We also measure the equal time density-
density correlator S(q)/N = 〈ρ†qτρqτ 〉, where ρqτ =
(1/N)

∑

i ρiτ exp(iq · ri) and ρiτ is the boson density at
site i and imaginary time τ .

We begin with the case η ≥ 1. A plot of the super-
fluid density ρs2 along the a2 lattice direction is shown
in Fig. 1 as function of η for different system sizes and
temperatures. Notice that it exhibits a staircase struc-
ture with the number of steps proportional to the system
size. Also, when the system size is doubled, the number
of jumps between adjacent steps doubles and the gap be-
tween them decreases by half. The corresponding plot for
ρs1 is shown in the inset of Fig. 1. As can be clearly seen
from both plots, the superfluid density undergoes sev-
eral discontinuous jumps before reaching zero at η ≃ 1.8.
Also, as shown in Fig. 2, the density-density correlator (in
the thermodynamic limit) in each segment of η is finite
at some ordering wavevector Q(η) in the corresponding
parameter range. Further, the ordering wavevector Q(η)
is a constant along the “plateau” and changes discontin-
uously upon entering the next phase. Thus, for these
finite size systems, the “plateaus” for 1 ≤ η ≤ 1.8 corre-
spond to distinct supersolid phases with sharp transitions
between them.

Next we address the anisotropy dependence of the or-
dering wavevectors. The evolution of Q = (kx, ky) as
a function of η is shown in Fig. 3. Here we have cho-
sen (kx, ky/

√
3) = (n1b1 + n2b2)/2πL, where b1 =

2π(1, 1/
√

3),b2 = 2π(0, 2/
√

3) are the reciprocal lattice
vectors and n1, n2 are integers. Comparing Fig. 3 and 1
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FIG. 3: The ordering wavevectors Q(η) = (kx, ky) as a func-
tion of η for different system sizes and temperatures. All the
parameters are the same as in Fig. 1. Note that for odd kxL,
ky cannot be zero and hence is off the axis. The data for
L = 96 for η > 1.6 are not fully equilibrated, leading to the
noisy behavior.

we find that the system locks at rational wavevectors that
are commensurate with the lattice in the “plateau” re-
gions. The ordering wavevector goes from Q0 = (4π/3, 0)
at the isotropic point (η = 1) to Q1 = (π, 0) at the tran-
sition point to the solid II phase (η ≃ 1.8), picking all
possible commensurate values in between. The discontin-
uous jumps of Q(η) between these commensurate values
decrease in magnitude with increasing system size. The
nature of the phase diagram for η < 1, with 0.84 ≤ η ≤ 1,
turns out to be qualitatively similar. We again find a
series of supersolid phase with the ordering wavevector
pinned to commensurate values along the “plateaus”, be-
fore the system reaches the Mott phase solid I at η = 0.84.
The only difference comes from the fact that for η < 1,
kxL is always even, so that ky remains pinned to zero
throughout the phase diagram.

Variational Monte Carlo.— We now supplement the
QMC results with the VMC studies of the global phase
diagram. Following Ref. [12], we use a variational wave
function:

|Ψ〉 = e−
1
2

P

i,j vi,jninj |Φ0〉, (2)

where |Φ0〉 = (b†k=0)
N |0〉 is the non-interacting superfluid

wave function and N is the total number of bosons. The
components of the Jastrow potential, vi,j = v(|Ri −Rj |)
are independently optimized to take into account the cor-
relations between particles at different sites. The varia-
tional ground state energy decreases with larger number
of vi,j . For the present study, we have incorporated 15
vi,j parameters to make our result qualitatively and semi-
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FIG. 4: Ground state phase diagram obtained by VMC as
a function of η and V1/t1 for L = 24. The supersolid phase
exists for V1 ≥ 10t1 and between 0.8 ≤ η ≤ 1.5. The inset
shows the superfluid order parameter and the density-density
correlators S(π, π) and S(2π/3, 2π/3) as a function of η for
V1/t1 = 9. The transition from the Mott solid I to supersolid
phase occurs at η ≃ 0.8.

quantitatively consistent with the QMC results. Stan-
dard Metropolis algorithm is used to calculate the varia-
tional energy. The method of statistical reconfiguration
by Sorella [12] is employed to obtain the optimized pa-
rameters. With the optimized wave function, we compute
the superfluid density ρ(k) =

∑

i,j ei(Ri−Rj)·k〈b†i bj〉, the
density-density correlator S(q), and obtain the ground
state phase diagram from these quantities[13].

The VMC results are summarized in Fig. 4 where the
ground state phase diagram is shown as a function of η
and V1/t1 for L = 24. Notice that a supersolid phase
exists in the range 0.8 ≤ η ≤ 1.5 for V1/t1 ≃ 8, which
is qualitatively consistent with the QMC results. We
have found that the upper limit of the phase boundary
ηu ≃ 1.5 depends on the system size, and progresses to-
wards larger values with increasing L. The lower phase
boundary ηl ≃ 0.8 is virtually independent of the sys-
tem size. For η ≤ ηl(≥ ηu), the system enters the Mott
phase I(II) provided V1/t1 ≥ 8. For weaker interactions,
the superfluid phase prevails for all η. The inset of Fig.
4 shows the transition from the Mott I to the supersolid
phase at η ≃ 0.8 for L = 12 and V1/t1 = 9. Note that the
density-density correlator S(2π/3, 2π/3) and the super-
fluid order parameter ρ(k = 0) rise sharply while S(π, π)
drops to zero around this point, signifying a transition
from the Mott I to the supersolid phase.

Schwinger Boson analysis.— Next, to obtain an ana-
lytical understanding of the η dependence of the order-
ing wavevector, and to determine the fate of the order-
ing wavevector plateaus in the thermodynamic limit, we
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FIG. 5: (Color online) Plot of q (ordering wavevector is given

by ~Q = (q, q)) as a function of η for several finite system sizes
(colored symbols) and in the thermodynamic limit (dashed
line) as obtained from Schwinger boson mean-field analysis.

carry out a mean-field Schwinger boson analysis of Eq.
1. To this end, we start from the XXZ spin model de-
scription of Eq. 1 [3] and rewrite these spins in terms

Schwinger bosons: S+
i = a†

i ci and Sz
i = (a†

iai − c†ici)/2.
Following standard procedure [14], we decouple the resul-
tant Hamiltonian using the mean-field order parameters
Aα = 〈a†

iai+α + c†i ci+α〉 and Bα = 〈aici+α − ciai+α〉,
where α = x, y for the horizontal/vertical and α = z
for the diagonal bonds emanating from site i, to get the
Schwinger boson mean-field free energy

fMF =
A2

x + A2
y + A2

z

η(1 + V1/t1)
−

B2
x + B2

y + B2
z

η(1 + V1/t1)

−(S + 1/2)λ− 1

N

∑

k

Ak +
1

2N

∑

k

ωk. (3)

Here Ak = Ax cos(kx) + Ay cos(ky) + Az cos(kx + ky),
Bk = Bx sin(kx) + By sin(ky) + Bz sin(kx + ky), ωk =
√

|λ − Ak|2 − B2
k is the spinon dispersion, and the pa-

rameter λ is used to enforce the constraint of 2S =
a†

iai + c†i ci at the mean-field level.
We obtain the values of mean-field variables at ground

state by solving the saddle-point equations ∂fMF

∂Aα
=

∂fMF

∂Bα
= ∂fMF

∂λ
= 0. The minima of the spinon disper-

sion ω(k) at kmin = ±(q/2, q/2) gives the spin order of

the XXZ model with ordering wave-vector ~Q = (q, q)
as shown in Fig. 5, both at finite sizes and in the
thermodynamic limit. In the thermodynamic limit, for
small t1/V1 ≃ 0.04, we find the supersolid phase for
0.8 ≤ η ≤ 1.3 with continually varying ordering wave-

vector Q(η) = (q, q) as shown in Fig. 5. The correspond-
ing spinon dispersion is gapless around both k = 0 (which
is a signature of superfluidity) and k = ±(q/2, q/2)
(which signifies the long-ranged solid order). For finite-
size systems, we find that the spinon dispersion at k =
±(q/2, q/2) acquires a gap which decreases with increas-
ing system size and vanishes in the thermodynamic limit.

Such a gap of the spinon dispersion leads to the staircase
behavior of the ordering wave-vector as shown in Fig.
5. Our analytical Schwinger boson results are in quali-
tative agreement with both QMC and VMC results for
finite system sizes and we therefore expect it to predict
the correct behavior of the ordering wave-vector in the
thermodynamic limit.

To conclude, we found that the hard-core boson sys-
tem with competing interactions on anisotropic triangu-
lar lattices is locked to a series of commensurate super-
solid phases for finite size systems, separated by series
of jumps. This behavior is expected to occur, for exam-
ple, in cold atom (bosons) systems on finite size optical
lattices. In the thermodynamic limit, however, the or-
dering wavevector Q(η) becomes a continuous function
of η, leading to a smooth crossover between a continuous
set of novel incommensurate supersolids phases.
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