331 research outputs found

    Is skill-biased technological change here yet ? Evidence from Indian manufacturing in the 1990

    Get PDF
    Most high and middle-income countries showed symptoms of skill-biased technological change in the 1980s. India-a low income country-did not, perhaps because India's traditionally controlled economy may have limited the transfer of technologies from abroad. However the economy underwent a sharp reform and a manufacturing boom in the 1990s, raising the possibility that technology absorption may have accelerated during the past decade. The authors investigate the hypothesis that skill-biased technological change did in fact arrive in India in the 1990s using panel data disaggregated by industry and state from the Annual Survey of Industry. These data confirm that while the 1980s were a period of falling skills demand, the 1990s showed generally rising demand for skills, with variation across states. They find that increased output and capital-skill complementarity appear to be the best explanations of skill upgrading in the 1990s. Skill upgrading did not occur in the same set of industries in India as it did in other countries, suggesting that increased demand for skills in Indian manufacturing is not due to the international diffusion of recent vintages of skill-biased technologies.Economic Theory&Research,Labor Markets,Investment and Investment Climate,Education and Digital Divide,Water and Industry

    Single photo-electron trapping, storage, and detection in a one-electron quantum dot

    Full text link
    There has been considerable progress in electro-statically emptying, and re-filling, quantum dots with individual electrons. Typically the quantum dot is defined by electrostatic gates on a GaAs/AlGaAs modulation doped heterostructure. We report the filling of such a quantum dot by a single photo-electron, originating from an individual photon. The electrostatic dot can be emptied and reset in a controlled fashion before the arrival of each photon. The trapped photo-electron is detected by a point contact transistor integrated adjacent to the electrostatic potential trap. Each stored photo-electron causes a persistent negative step in the transistor channel current. Such a controllable, benign, single photo-electron detector could allow for information transfer between flying photon qubits and stored electron qubits.Comment: 4 Pages, 5 Figure

    Recovery of Behavioral Changes and Compromised White Matter in C57BL/6 Mice Exposed to Cuprizone: Effects of Antipsychotic Drugs

    Get PDF
    Recent animal and human studies have suggested that the cuprizone (CPZ, a copper chelator)-fed C57BL/6 mouse may be used as an animal model of schizophrenia. The goals of this study were to see the recovery processes of CPZ-induced behavioral changes and damaged white matter and to examine possible effects of antipsychotic drugs on the recovery processes. Mice were fed a CPZ-containing diet for 5 weeks then returned to normal food for 3 weeks, during which period mice were treated with different antipsychotic drugs. Various behaviors were measured at the end of CPZ-feeding phase as well as on the 14th and 21st days after CPZ withdrawal. The damage to and recovery status of white matter in the brains of mice were examined. Dietary CPZ resulted in white matter damage and behavioral abnormalities in the elevated plus-maze (EPM), social interaction (SI), and Y-maze test. EPM performance recovered to normal range within 2 weeks after CPZ withdrawal. Alterations in SI showed no recovery. Antipsychotics did not alter animals’ behavior in either of these tests during the recovery period. Altered performance in the Y-maze showed some recovery in the vehicle group; atypical antipsychotics, but not haloperidol, significantly promoted this recovery process. The recovery of damaged white matter was incomplete during the recovery period. None of the drugs significantly promoted the recovery of damaged white matter. These results suggest that CPZ-induced white matter damage and SI deficit may be resistant to the antipsychotic treatment employed in this study. They are in good accordance with the clinical observations that positive symptoms in schizophrenic patients respond well to antipsychotic drugs while social dysfunction is usually intractable

    Efficient orange organic light-emitting diodes employing a central aniline bridged multiresonant thermally activated delayed fluorescence emitter

    Get PDF
    Funding: S. W. and J. X. W. thank the China Scholarship Council (201906250199, 202006250026) for support. Dianming Sun acknowledges support from the Royal Academy of Engineering Enterprise Fellowship (EF2122-13106). E. Z.-C. thanks the Engineering and Physical Sciences Research Council (EP/W015137/1, EP/W007517/1). X.-H. Z. acknowledges support by the National Natural Science Foundation of China (Grant No. 52130304, 51821002) and the Collaborative Innovation Center of Suzhou Nano Science & Technology.Multiresonant thermally activated delayed fluorescence (MR-TADF) compounds are attractive for use in organic light-emitting diodes as they show narrowband emission, are bright, and can harvest both singlet and triplet excitons for the emission of light. Reflected in the paucity of examples of orange-to-red emitters, developing MR-TADF emitters that emit beyond the green remains an outstanding materials design challenge. In this work, we report one of the first carbonyl-based orange MR-TADF emitters, DDiKTa-A , which is based on the dimerization of the sky-blue emitting DiKTa through a central aniline bridge. DDiKTa-A emits at λPL of 562 nm and has high photoluminescence quantum yield of 92% in 2 wt% doped films in mCP. DDiKTa-A exhibits temperature dependent steady-state photoluminescence in 2-MeTHF, acting as an indirect indicator of the polarity of the medium. The OLEDs with DDiKTa-A showed an EQEmax of 20.3%, but with significant efficiency roll-off (EQE100 of 13.2%). The EQEmax was improved, and the efficiency roll-off mitigated by incorporating an assistant dopant, 4CzIPN, within the emissive layer of the device. The hyperfluorescence device showed an EQEmax of 24.3%, which decreased to 22.5 and 14.6% at 100 and 1000 cd m−2, respectively.Peer reviewe

    CLAD: A realistic Continual Learning benchmark for Autonomous Driving

    Full text link
    In this paper we describe the design and the ideas motivating a new Continual Learning benchmark for Autonomous Driving (CLAD), that focuses on the problems of object classification and object detection. The benchmark utilises SODA10M, a recently released large-scale dataset that concerns autonomous driving related problems. First, we review and discuss existing continual learning benchmarks, how they are related, and show that most are extreme cases of continual learning. To this end, we survey the benchmarks used in continual learning papers at three highly ranked computer vision conferences. Next, we introduce CLAD-C, an online classification benchmark realised through a chronological data stream that poses both class and domain incremental challenges; and CLAD-D, a domain incremental continual object detection benchmark. We examine the inherent difficulties and challenges posed by the benchmark, through a survey of the techniques and methods used by the top-3 participants in a CLAD-challenge workshop at ICCV 2021. We conclude with possible pathways to improve the current continual learning state of the art, and which directions we deem promising for future research

    Re-examining Distillation For Continual Object Detection

    Full text link
    Training models continually to detect and classify objects, from new classes and new domains, remains an open problem. In this work, we conduct a thorough analysis of why and how object detection models forget catastrophically. We focus on distillation-based approaches in two-stage networks; the most-common strategy employed in contemporary continual object detection work.Distillation aims to transfer the knowledge of a model trained on previous tasks -- the teacher -- to a new model -- the student -- while it learns the new task. We show that this works well for the region proposal network, but that wrong, yet overly confident teacher predictions prevent student models from effective learning of the classification head. Our analysis provides a foundation that allows us to propose improvements for existing techniques by detecting incorrect teacher predictions, based on current ground-truth labels, and by employing an adaptive Huber loss as opposed to the mean squared error for the distillation loss in the classification heads. We evidence that our strategy works not only in a class incremental setting, but also in domain incremental settings, which constitute a realistic context, likely to be the setting of representative real-world problems

    Fluorinated dibenzo[a,c]-phenazine-based green to red thermally activated delayed fluorescent OLED emitters

    Get PDF
    Purely organic thermally activated delayed fluorescence (TADF) emitting materiaLs for organic Light-emitting diodes (OLEDs) enable a facile method to modulate the emission color through judicious choice of donor and acceptor units. Amongst purely organic TADF emitters, the development of TADF molecules that emit at Longer wavelengths and produce high-efficiency devices that show Low efficiency roll-off remains a challenge. We report a modular synthesis route that delivers three structurally related fluorinated dibenzo[a,c]-phenazine-based TADF molecules, each bearing two donor moieties with different electron-donating strengths, namely 3,6-bis(3,6-di-tert-butyl-9H-carbazol-9-yl)-10-fluorodi-benzo[a,c]phenazine (2DTCz-BP-F), 3,6- bis(9,9-dimethylacridin-10(9H)-yl)-10-fluorodibenzo[a,c]-phenazine (2DMAC-BP-F) and 10,10'-(10-fluorodibenzo[a,c]phenazine-3,6-diyl)bis(10H-phenoxazine) (2PXZ-BP-F). They exhibit donor strength-controlled color-tuning over a wide color range from green to deep-red with photoluminescence maxima, lambda(PL), of 505 nm, 589 nm, and 674 nm in toluene solution. OLED devices using these TADF materials showed excellent to moderate performance with an EQE(max) of 21.8% in the case of 2DMAC-BP-F, 12.4% for 2PXZ-BP-F and 2.1% with 2DTCZ-BP-F, and associated electroluminescence (EL) emission maxima, lambda(EL), of 585 nm, 605 nm and 518 nm in an mCBP host, respectively.Peer reviewe

    Thermally activated delayed fluorescent dendrimers that underpin high-efficiency host-free solution-processed organic light emitting diodes

    Get PDF
    This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie SkƂodowska-Curie grant agreements No. 838009 (TSFP) and No 812872 (TADFlife). D.S. acknowledges support from the Marie SkƂodowska-Curie Individual Fellowship (TSFP), the National Postdoctoral Program for Innovative Talents (BX201700164), and the Jiangsu Planned Projects for Postdoctoral Research Funds (2018K011A). S.B. acknowledges support from the German Science Foundation (392306670/HU2362). The St Andrews team thank the Leverhulme Trust (RPG2016047) and EPSRC (EP/P010482/1) for financial support. X.Z. would like to thank the support from the National Key Research & Development Program of China (Grant No. 2020YFA0714601, 2020YFA0714604), the National Natural Science Foundation of China (Grant No. 52130304, 51821002), Suzhou Key Laboratory of Functional Nano & Soft Materials, Collaborative Innovation Center of Suzhou Nano Science & Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the 111 Project, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices. E. Z.-C. is a Royal Society Leverhulme Trust Senior Research fellow (SRF\R1\201089).The development of high-performance solution-processed organic light-emitting diodes (OLEDs) remains a challenge. An effective solution, highlighted in this work, is to use highly efficient thermally activated delayed fluorescence (TADF) dendrimers as emitters. Here, the design, synthesis, density functional theory (DFT) modeling, and photophysics of three triazine-based dendrimers, tBuCz2pTRZ , tBuCz2mTRZ , and tBuCz2m2pTRZ , is reported, which resolve the conflicting requirements of achieving simultaneously a small ΔEST and a large oscillator strength by incorporating both meta- and para-connected donor dendrons about a central triazine acceptor. The solution-processed OLED containing a host-free emitting layer exhibits an excellent maximum external quantum efficiency (EQEmax) of 28.7%, a current efficiency of 98.8 cd A−1, and a power efficiency of 91.3 lm W−1. The device emits with an electroluminescence maximum, λEL, of 540 nm and Commission International de l'Éclairage (CIE) color coordinates of (0.37, 0.57). This represents the most efficient host-free solution-processed OLED reported to date. Further optimization directed at improving the charge balance within the device results in an emissive layer containing 30 wt% OXD-7, which leads to an OLED with the similar EQEmax of 28.4% but showing a significantly improved efficiency rolloff where the EQE remains high at 22.7% at a luminance of 500 cd m−2.Publisher PDFPeer reviewe

    Regiochemistry of donor dendrons controls the performance of thermally activated delayed fluorescence dendrimer emitters for high efficiency solution-processed organic light-emitting diodes

    Get PDF
    This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie SkƂodowska-Curie grant agreement No. 838009 (TSFP) and No 812872 (TADFlife). D.S. acknowledges support from the Marie SkƂodowska-Curie Individual Fellowship, the National Postdoctoral Program for Innovative Talents (BX201700164), the Jiangsu Planned Projects for Postdoctoral Research Funds (2018K011A). E.Z.-C. is a Royal Society Leverhulme Trust Senior Research fellow (SRF∖R1∖201089). The St Andrews team would also like to thank the Leverhulme Trust (RPG-2016047) and EPSRC (EP/P010482/1) for financial support. This work was also supported by Comunidad de Madrid (Spain) – multiannual agreement with UC3M (“Excelencia para el Profesorado Universitario” – EPUC3M14) – Fifth regional research plan 2016-2020 and by the Spanish Ministry of Science, Innovation and Universities (MICINN) through project RTI2018-101020-B-100. X.Z. would like to thank the support from the National Key Research & Development Program of China (Grant No. 2020YFA0714601, 2020YFA0714604), the National Natural Science Foundation of China (Grant No. 52130304, 51821002), Suzhou Key Laboratory of Functional Nano & Soft Materials, Collaborative Innovation Center of Suzhou Nano Science & Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the 111 Project, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices.The potential of dendrimers exhibiting thermally activated delayed fluorescence (TADF) as emitters in solution-processed organic light-emitting diodes (OLEDs) has to date not yet been realized. This in part is due to a poor understanding of the structure–property relationship in dendrimers where reports of detailed photophysical characterization and mechanism studies are lacking. In this report, using absorption and solvatochromic photoluminescence studies in solution, the origin and character of the lowest excited electronic states in dendrimers with multiple dendritic electron-donating moieties connected to a central electron-withdrawing core via a para- or a meta-phenylene bridge is probed. Characterization of host-free OLEDs reveals the superiority of meta-linked dendrimers as compared to the already reported para-analogue. Comparative temperature-dependent time-resolved solid-state photoluminescence measurements and quantum chemical studies explore the effect of the substitution mode on the TADF properties and the reverse intersystem crossing (RISC) mechanism, respectively. For TADF dendrimers with similarly small ∆EST, it is observed that RISC can be enhanced by the regiochemistry of the donor dendrons due to control of the reorganization energies, which is a heretofore unexploited strategy that is distinct from the involvement of intermediate triplet states through a nonadiabatic (vibronic) coupling with the lowest singlet charge transfer state.Publisher PDFPeer reviewe
    • 

    corecore